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Cognitive Network Interference
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Abstract— Opportunistic spectrum access creates the opening
of under-utilized portions of the licensed spectrum for reuse,
provided that the transmissions of secondary radios do not cause
harmful interference to primary users. Such a system would
require secondary users to be cognitive—they must accurately
detect and rapidly react to varying spectrum usage. Therefore,
it is important to characterize the effect of cognitive network
interference due to such secondary spectrum reuse. In this paper,
we propose a new statistical model for aggregate interference of
a cognitive network, which accounts for the sensing procedure,
secondary spatial reuse protocol, and environment-dependent
conditions such as path loss, shadowing, and channel fading.
We first derive the characteristic function and cumulants of
the cognitive network interference at a primary user. Using
the theory of truncated-stable distributions, we then develop
the statistical model for the cognitive network interference. We
further extend this model to include the effect of power control
and demonstrate the use of our model in evaluating the system
performance of cognitive networks. Numerical results show the
effectiveness of our model for capturing the statistical behavior of
the cognitive network interference. This work provides essential
understanding of interference for successful deployment of future
cognitive networks.

Index Terms—Opportunistic spectrum access, cognitive ra-
dio, cognitive network interference, detection-and-avoidance,
truncated-stable distribution.

I. INTRODUCTION

ITH the emergence of new wireless applications and

devices, there is a dramatic increase in the demand for
radio spectrum. Due to the scarcity of radio spectrum and the
under-utilization of assigned spectrum, government regulatory
bodies such as the U.S. Federal Communications Commission
(FCC) have started to review their spectrum allocation policies
[1], [2]. Conventional rigid spectrum allocation forbids flexible
spectrum usage that severely hinders efficient utilization of
scarce spectrum since bandwidth demands vary along time and
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space dimensions. Therefore, opportunistic spectrum access
together with a cognitive radio (CR) technology has become
a promising solution to resolve this problem [3]-[7].

Opportunistic spectrum access creates the opening of under-
utilized portions of the licensed spectrum for reuse, provided
that the transmissions of secondary radios do not cause
harmful interference to primary users. For secondary users to
accurately detect and access the idle spectrum, CR has been
proposed as an enabling technology [3], [4], [7]. For example,
if a communication channel is active between the primary and
secondary networks, the busy channel assessment can be based
on the detection of a preamble shared between the primary and
secondary networks or on the energy sensing of the primary
network radio signals [8]-[10]. Moreover, the CR network can
implement a detect-and-avoid protocol where the transmission
power levels of the CR devices are based on the sensed power
of the primary network signals.

Spectrum sharing is however challenging due to the un-
certainty associated with the aggregate interference in the
network. Such uncertainty can be resulted from the unknown
number of interferers and unknown locations of the interferers
as well as channel fading, shadowing, and other uncertain
environment-dependent conditions [11], [12]. Therefore, it
is crucial to incorporate such uncertainty in the statistical
interference model in order to quantify the effect of the
cognitive network interference on the primary network system
performance.! A unifying framework for characterizing the
network interference was proposed to investigate a variety
of issues involving aggregate interference generated asyn-
chronously in a wireless environment subject to path loss,
shadowing, and multipath fading [13], [14]. The original
motivation for this work was to quantify the aggregate network
emission of randomly located ultra-wide bandwidth (UWB)
radios [15]—-[17] in terms of their spatial density [18]-[20].
This framework has also been used to study the coexistence
issues in heterogeneous wireless networks [21]-[25]. A com-
mon theme of all these work is the use of a Poisson point
process [26] for positions of the emitting nodes. The Poisson
point process has been widely used in diverse fields such as
astronomy [27], [28], positron emission tomography [29], cell
biology [30], optical communications [31]-[34], and wireless
communications [28], [35]-[40]. More recently, the Poisson
model has been applied for spatial node distributions in a
variety of wireless networks such as random access, ad hoc,
relay, cognitive radio, or femtocell networks [41]-[52].

To address the coexistence problem arisen by secondary

" Throughout this paper, we refer to the aggregate interference generated by
secondary users sharing the same spectrum with the primary user as cognitive
network interference.
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cognitive networks, it is of great importance to accurately
model the aggregate interference generated by multiple ac-
tive secondary users in the network. In [48], the moment
expression for the aggregate interference generated by Poisson
nodes in an arbitrary area was derived assuming the typical
unbounded path-loss model. However, the unbounded path-
loss model results in significant deviations from a realistic
performance [49]. For cognitive radio networks, the log-
normal distribution was proposed to model the sum of all
interferers’ powers [45]. This log-normal approximation was
also used for the aggregate interference at primary users
without accounting for the channel uncertainty due to fading
[46]. The optimal power control strategies for secondary users
were determined in [47] based on the Poisson model of the
primary network.

In this paper, we propose a new statistical model for per-
dimension (real or imaginary part) aggregate interference of a
cognitive network, accounting for the sensing procedure, sec-
ondary spatial reuse protocol, spatial density of the secondary
users and environment-dependent conditions such as path loss,
shadowing, and channel fading. Moreover, our framework al-
lows us to model the cognitive network interference generated
by secondary users in a limited or finite region, taking into
account the shape of the region and the position of the primary
user. As an example, we consider two types of secondary
spatial reuse protocols, namely, single-threshold and multiple-
threshold protocols. For each protocol, we first express the
characteristic function (CF) of the cognitive network inter-
ference, from which we derive its cumulants. Using these
cumulants, we then model the cognitive network interference
as truncated-stable random variables. We further extend this
model to include the effect of power control and demonstrate
the use of our model in evaluating a system performance such
as the bit error probability (BEP) in the presence of cognitive
network interference. Numerical results verify the validity of
our model in capturing the effect of the cognitive network
interference in different scenarios.

The paper is organized as follows. Section II presents the
system model. Section III derives the instantaneous inter-
ference distribution and its truncated-stable model for each
secondary spatial reuse protocol. Section IV demonstrates
applications of our statistical model for cognitive network
interference. Section V provides numerical results to illustrate
the effectiveness of our framework for characterizing the
coexistence between primary and secondary networks in terms
of various system parameters. Section VI gives the conclusion.
We relegate the glossary of statistical symbols used throughout
the paper to Appendix A and the derivations of cumulants to
Appendix B.

II. SYSTEM MODEL

For cognitive networks, the secondary users need to sense
channels before transmission in order not to cause harmful
interference to a primary network. In this paper, we consider
the primary network in frequency division duplex mode.
Therefore, to detect the presence of active primary users,
the secondary user senses the primary users’ uplink channel.
Furthermore, we consider the secondary network as a simple
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ad-hoc network where secondary users join or exit the net-
work, and sense or access the channel independently without
coordinating with other secondary users [53]-[55]. As such,
there exists the possibility that secondary users can transmit
at the same time regardless of their distances between each
other.?

A. Cognitive Network Activity Model

The activity of each secondary user depends on the strength
of the received uplink signal transmitted by the primary
user. In the following, we consider two types of secondary
spatial reuse protocols, namely: single-threshold and multiple-
threshold protocols.

1) Single-Threshold Protocol: In this case, the ith sec-
ondary user is active if

KPBY;

R < B, (1)
or equivalently,

R;72PY; < ¢, 2)

where (3 is the activating threshold; £ % is the normalized
P

threshold; P, is the transmitted power of the primary user; Y;
is the squared fading path gain of the channel from the primary
user to the ith secondary user; K is the gain accounting for
the loss in the near-field; R; is the distance between the
primary and the ith secondary user; and b is the amplitude
pass-loss exponent.” We assume that Y;’s are independent
and identically distributed (IID) with the common cumulative
distribution function (CDF) Fy (-). Therefore, the activity
of the secondary network users can be represented by the
Bernoulli random variable:

Lo, (Ri2Y;) ~ Bern (Fy, (RP*()), 3)

with the indicator function defined as

Lp,q) (z) = { 0, otherwise, @

where the value one of the Bernoulli variable denotes that the
secondary user is active.

2) Multiple-Threshold Protocol: For this case, the transmis-
sion power of the secondary network users is set according
to the detected power level of the primary network uplink
signal [56]. We consider N — 1 normalized threshold values
C1,C2,...,Cn—1 in increasing order to identify N different
classes (or sets) of active secondary users, denoted by Ay,
k=1,2,...,N. Let (, = 0 and (y = oo. Then, the kth
active class A, obeys the following activation rule:*

Lieuorc (ReY5) ~ Bem (it (0. R G, REG) ).
®)

2When a more intelligent medium access control protocol that involves
a form of coordination or local information exchange is feasible for the
secondary network, our results can still serve as a worst-case scenario analysis.

3For brevity, we assume that the noise effect is negligible on the primary
detection procedure as in [45].

4The zeroth-order partial moment u&pt)

can be written in terms of its CDF as

M&pt) (0,1,u) = Fx (u) — Fx (1) .

(0,1, u) of the random variable X
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Note that the power of the received primary user’s signal at the
active secondary users in the class Aj, is between K P,(r—1
and K Py(y.

B. Interference Model

The interference signal at the primary receiver generated by
the ith cognitive interferer can be written as

li = /PR X;, (6)

where F; is the interference signal power at the limit of
the near-far region;5 R; is the distance between the ith
cognitive interferer and the primary receiver; and X; is the
per-dimension fading channel path gain of the channel from
the ith cognitive interferer to the primary receiver.® In the
following, we assume that X;’s are IID with the common
probability density function (PDF) fx (-), which are mutually
independent of Y;’s.

We consider that the secondary users are spatially scattered
according to an homogeneous Poisson point process in a
two-dimensional plane R?, where the victim primary user is
assumed to be located at the center of the region. Let S C Z™
be the index set of secondary users in a region R C R2. Then
the probability that k£ secondary users lie inside R depends
only on the total area A of the region, and is given by [26]

(AAR)F
ST
where A is the spatial density (in nodes per unit area).
Furthermore, we assume that the region R is constrained in
the annulus prescribed by two radius d,,i, and d,,x, which are
minimum and maximum distances from the primary receiver,
respectively.’” This allows us to consider a scenario where the
secondary users are located within a limited region.

P{|S| =k} = e MR

k=0,1,2,... (7)

IIT. INSTANTANEOUS INTERFERENCE DISTRIBUTION

To characterize the cognitive network interference, we first
derive the cumulants for the cases of full network activity
(all secondary users are active) and regulated activity (each
secondary user is regulated by a spatial reuse protocol) in
Section III-A and III-B, respectively. Using these cumulant
expressions, we develop the symmetric truncated-stable model
for the cognitive network interference in Section III-C.

A. Full Activity

In this case, the cognitive network interference is generated
by all the secondary users present in the region R and can be
written as

I = VPY R7PX;. (8)
€S
&
Zfa(R)

SWe consider the near-far region limit at 1 meter.

Note that X; = R{H;}, where H; is the complex path gain of the channel
from the ¢th cognitive interferer to the primary receiver.

"Note that R; in (6) can be smaller than 1. Therefore, the received
interference power can be larger than Py but it is finite since dpyin > 0.

By using [14, Theorem 3.1], the CF of Z, (R) can be
expressed as

dmax
Yz, (R) (Jw) = exp <—27T)\/X/d [1—exp (jwa:r_b)}

min

X fx (x) rdrdx) , &)

where j = 4/—1. Using (9), we can then calculate the nth
cumulant of the interference Zg, (R) as follows:

1 d" gz, w) (jw)

K;Zfa (R) (n) =

J dw o
dmax
= 271'/\/ / "7 £y () drdx
X Jdmin
2w\ 2—nb 2—nb
= I s . 10
nb—2 ( min max )/J'X (n) ( )

Using the cumulant of Zg, (R), we can obtain the nth cu-
mulant of the cognitive network interference /¢, for the full
activity case as follows:

ki, (n) = PM? (11)

K/Zfa(R) (n) :

B. Regulated Activity

1) Single-Threshold Protocol: In this spatial reuse protocol,
the activity of the secondary users in the region R is regu-
lated by the single normalized threshold ( according to (3).
Therefore, the cognitive network interference for the single-
threshold protocol can be written as

e = VP Y RI'X,

1€ Agt

12)

Zst(C §R)
where A defines the index set of active secondary users in
the region R:

Ag ={i € S: 1y (R7?Y;) =1}.
Similar to (9), the CF of Z (¢; R) can be expressed as

(13)

Yz, (¢R) (Jw)

dtnax
= exp <—27T/\/ / / [1 — exp (ijrib)]
X JY Jdmin

X Lo,¢] (rf%y) Ix (@) fy (y) rdrdyd:c) , (14

from which the cumulant xz (¢ (n) is derived in Ap-
pendix B-A. Using the cumulant of Zy (¢; R), we can obtain
the nth cumulant of the cognitive network interference /4 for
the single-threshold protocol as follows:

fi, () = B Kz ) (). (15)
Remark 1: As ( — oo, the second and third terms in (38)
vanish and hence,

Clim ki, (n) = Ky, (n), (16)

as expected. Therefore, the full activity can be viewed as an
extreme case of the single-threshold spatial reuse such that
¢ — .
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2) Multiple-Threshold Protocol: Using (5), the per-class
cognitive interference generated by the secondary users in Ay
can be written as

hetk = /Pix > Ri°X,
€A
————
Zk(R)

A7)

where P j, is the transmitted power of the secondary users in
the kth active class A;, and

Ag = {7’ €S: ]l[Ck—l-,Ck] (Rii%yi) = 1}'

The N power levels P 1, Pi2,..., Pr v are set in decreasing
order such that users active in classes characterized by higher
detected power level of the primary signal transmit with lower
power. Similar to (14), the CF of Zj, (R) can be expressed as

Vz,(R) (Jw)—exp< 27 A / / / m [1 — exp (jwar™)]

*y) fx () fv (y) Tdfdydl‘>
(19)

The cognitive network interference generated by the sec-
ondary users in all the N classes is then given by

N
hot = Y /PirZi (R
k=1

Since all the Zj (R)’s are statistically independent,® we
obtain the nth cumulant of the cognitive network interference
Imt for the multiple-threshold protocol as

N
n/2
n) = Z P k7, %) (n)

where k7, () (n) are given by (40), (44), and (46) in Ap-
pendix B-B for k = 1, k = 2,3,...,N —1,and £k = N,
respectively.

Remark 2: Using the cumulant expressions (10), (15), and
(21), we can characterize statistical properties (e.g., mean,
variance, and other higher order statistics) of the cognitive
network interference for each secondary spatial reuse protocol.
For example, the second-order cumulant can be used to
measure the power of the cognitive network interference.

(18)

x ]I[Ck 1,Cx] (

(20)

(21)

C. Truncated-Stable Distribution Model

The truncated-stable distributions are a relatively new class
of distributions that follow from the class of stable distribu-
tions [57]. The attractivenesses of using stable distributions to
model interference in wireless networks are: 1) the ability to
capture the spatial distribution of the interfering nodes; and 2)
the ability to accommodate heavy tail behavior exhibiting the
dominant contribution of a few interferers in the vicinity of the
primary user [58]. However, as shown in [14], the aggregate

8The cumulants have the linear property for independent random variables,
i.e., if X and Y are independent, then

x4y (n) = kx (n) + ky (n).

interference converges to a stable distribution only if the
interferers are scattered in the entire plane. Stable distributions
have unbounded (infinite) second-order moment due to the
singularity at » = 0 and thus, care must be taken when using
this model. The truncated-stable distributions have smoothed
tails and finite moments, offering an alternative statistical tool
to model the aggregate interference in more realistic scenarios
without this singularity.

The CF of a symmetric truncated-stable random variable

T ~ S8 (7, a,g) is given by [59]
Ur (jw)
- Q“D :
(22)

= exp (77 (o) [ I

where T"(-) is the Euler’s gamma function; and +/, o and
g are the parameters associated with the truncated-stable
distribution. The parameters + and « are akin to the dispersion
and the characteristic exponent of the stable distribution, re-
spectively. The parameter g is the argument of the exponential
function used to smooth the tail of the stable distribution.
The nth cumulant of the truncated-stable distribution can be
obtained using (22) as

kT (n) = VT (—a)g™™" H;‘:ol (v —i), forevenn
0, for odd n.
(23)

For given «, using (23), the parameters 4’ and g can be
expressed in terms of the first two nonzero cumulants, namely,
the second- and fourth-order cumulants.

To model the cognitive network interference using the
truncated-stable distribution, we first fix the characteristic
exponent to «« = 2/b. This choice is motivated by the fact
that as dpin — 0 and dypax — 00, the cognitive network
interference follows a stable distribution with the characteristic
exponent « = 2/b. Let /o be the cognitive network interfer-
ence corresponding to the activity model A € {fa,st, mt},
i.e., full activity, regulated activity with the single-threshold
protocol, or the multiple-threshold protocol. Then, we can
model the cognitive network interference /5 as the symmetric
truncated-stable random variable, i.e.,

Ia ~ St (a0 =2/b,ga), (24)

where the dispersion and smoothing parameters ) and ga
are given in terms of the second and fourth cumulants of /5
as
R/ 2
= A(<i>< 2)(@-3)]%
K oa— a— 2

MN—a)a(a—1) [A/{T

Ry (2) (@ = 2) (a = 3)

Kia (4) .

To validate our statistical model, we consider an annulus
region defined by dyin = 1 meter, dypax = 60 meters,
and A = 0.1 users/m?. Both primary and secondary signals
experience Rayleigh fading, i.e., v/Y; ~ Rayleigh(1/2) and
|H;] ~ Rayleigh(1/2). We consider the multiple-threshold

(25)

ga = (26)
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60

401

20}

meters
=)

Fig. 1. Node displacements of a CR network with the multiple-threshold
protocol (not only a single realization snapshot). dp,in, = 1 meter, dmax = 60
meters, A = 0.1 users/mz, N =3, (1 = —42 dBm, and (2 = —20 dBm.
The green (asterisk), blue (circle), and red (diamond) colors (markers)
represent the classes Aj, Az, and A3, respectively.

protocol implemented using two thresholds (i.e., N = 3)
with the following parameters: the secondary network users
transmit with power P;; = 0 dBm if the signal power
coming from the primary user is lower than (; = —42 dBm,
with power P, = —23.7 dBm if the signal power coming
from the primary user is between (; and (o = —20 dBm,
and with power P35 = —38.7 dBm if the signal power
coming from the primary user is higher than (,. Fig. 1 shows
realization snapshots of active secondary users regulated by
this multiple-threshold protocol, while Figs. 2 and 3 show
the PDF and complementary CDF (CCDF) of the cognitive
network interference /,;. We can observe from Figs. 2 and 3
that the simulation results match well with the truncated-stable
statistical model.

With the symmetric truncated-stable model, we can also
account for shadowing in the characterization of the cogni-
tive network interference. For example, consider the single-
threshold protocol shadowing environment with obstacles such
that the whole region R can be divided into different subre-
gions Ro, and Ry, Ra, ..., R corresponding to the positions
of the obstacles. Due to shadowing, these L subregions expe-
rience additional attenuation behind those obstacles. Then, the
cognitive network interference can be written as

L
e = > VP Y, RiX, 27)
=0 1€ A0
N—————

Zo (CBeiRe)
where

Age={i€ SORe: 1 57 (R7YV) =1}, @8)

For ¢ =1,2,...,L, Py and Bg account for an additional
attenuation for thve subregion R, behind thev obstacle, and
Py = Prand By = 1. The CF of Zy({fBs;R¢) can be

T T T T T T T

O simulation
truncated-stable

0.1
=
=
0.05
0
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
x
Fig. 2. PDF of the cognitive network interference /¢ for the multiple-

threshold protocol with the same parameters as in Fig. 1. Py 1 = 0 dBm for
A1, P2 = —23.7 dBm for A, and P 3 = —38.7 dBm for Ajz.

107 0000000000000 A T T T T
O simulation
truncated-stable

107k 1

O
~107% E

=

107° 1

1 0_4 1 1 1 1 1

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
x

Fig. 3. CCDF of the cognitive network interference /¢ for the multiple-

threshold protocol with the same parameters as in Fig. 1. Pr; = 0 dBm for
A1, Prp = —23.7 dBm for A3, and P 3 = —38.7 dBm for As.

expressed as

Yz (chire) U

)
— exp —ag/\/x/y/; [1— exp (jwzr™")]

x ]1[07461] (r=*"y) fx (z) fv (y) rdrdyda
(29)

where a; and by are the limits of the subregion R,; and 6,
is the angle covered by R,. If the obstacle is present, the
angle 6, corresponds to the angle covered by the obstacle.
For a single obstacle placed at distance d from the origin,
we have two subregions in front and behind the obstacle:
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meters

meters

Fig. 4. Node displacements of a CR network with the single-threshold
protocol in the presence of shadowing (not only a single realization snapshot).
dmin = 1 meter, dmax = 60 meters, A = 0.01 users/mQ, ¢ = —40 dBm,
01 = 02 = 7/2, and Bl = ,Bg = 20 dB. The shadowing is characterized
by two obstacles present at 10 and 25 meters from the primary receiver,
covering the angle of 7/2, and causing additional attenuation of 20 dB. The
blue (circle) and green (asterisks) colors (markers) represent inactive and
active nodes, respectively.

(a1,b1) = (dmin,d) and (ag,b2) = (d, dmax), respectively.
The nth cumulant of the cognitive network interference for
the single-threshold protocol in the presence of shadowing can
be written as

L
ki, (n) =S Pk
=0

where the cumulant RZo(cBeRe) (n) is obtained from

Zst (CBZ;Re) (TL) ) (30)

Kz.(¢c;r) (n) in (38) by replacing ¢, 27, dmin, and dmax
with (Bg, 0, ag, and by, respectively. Fig. 4 shows real-
ization snapshots of active secondary users regulated by the
single-threshold protocol with ¢ = —40 dBm in the region
prescribed by dpi, = 1 meter and dyax = 60 meters for
A = 0.01 users/m?. The shadowing is characterized by
two obstacles present at 10 and 25 meters from the primary
receiver, covering the angle of 7/2 and causing additional
attenuation of 20 dB. Accordingly, we set §; = 63 = 7/2, and
B1 = f» = 20 dB. Figs. 5 and 6 show the PDF and CCDF of
the cognitive network interference /g in this situation. From
these figures, we can observe again that the truncated-stable
model captures a remarkably accurate statistical behavior of
the cognitive network interference.

IV. APPLICATIONS
A. Effect of the Primary Network Power Control

Power control is often used in cellular systems to overcome
the near-far problem. If the primary network uses power
control, the transmitting power of the primary user varies
depending on the distance R, and channel gain H|, between
the base station and primary receiver. Therefore, the transmit
power £, is random and it is important to understand the effect
of power control on the cognitive network interference. Under
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0.06 T T T T T T T T

O simulation
truncated-stable

0.05

0.04

. 0.03

i

0.02

0.01

Fig. 5. PDF of the cognitive network interference /s, for the single-threshold
protocol in the presence of shadowing with the same parameters as in Fig. 4.

10 R T T T T T
3 O simulation
truncated-stable
107
O
Z 107
[
10°F
10_4 1 1 1 1 1 1 1 1 1
-05 -04 -03 -02 -0.1 0 0.1 0.2 0.3 0.4 0.5
x
Fig. 6. CCDF of the cognitive network interference /st for the single-

threshold protocol in the presence of shadowing with the same parameters as
in Fig. 4.

perfect power control, P, is set such that P,|Hp|?/(R2) >
P*, where P* is the minimum required power level. For
discrete power control, the set of possible power levels are
finite. Assuming that there are L possible transmit power
levels P, P, ..., P, we have the following probability mass
function (PMF) for P, at these power levels:

P{R, = P}
* p2b
P %ga}, for £ =1,
* p2b
=P Pg1<%<Pg}, for 0 =2,3,...,L —1,
* p2b
P %MDL}, for ¢ = L,
(31)
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— /
— ——|
P |

:
i
///// I

Fig. 7. Circular-section approximation of the non-circular region. The green
square represents the primary user. Different colored sections correspond to
different secondary user densities.

which can be determined empirically. In this case, the nth
cumulant of the cognitive network interference for the single-
threshold protocol can be written as

ki, (n) = E {PI”/ k. (i) (n)}

L
= pIn/z X:P{Pp = P} ”Zst( 5

)3 ) (- G2

KPy’

B. Effect of Secondary Interference Avoidance

Instead of allowing all the active secondary users in the
same class to transmit at the same power, we can also employ
secondary power control, which will be effective in reducing
interference and improving power efficiency [60], [61]. In
addition, we can effectively design a more power-efficient
secondary network if the knowledge of the secondary users’
positions is available. For example, each secondary user avoids
transmitting using on-off power control if the average received
signal-to-noise ratio at its desired receiver is very low. Hence,
with the location-awareness, we can regulate each secondary
user to transmit only if its desired secondary receiver is within
a certain maximum transmission range R*, which corresponds
to the maximum distance beyond which reliable transmission
is not possible. Let P, and Ry be the random variables
that represent the secondary transmit power and the distance
from the intended receiver, respectively. Then, for the single-
threshold spatial reuse protocol with power control, the nth
cumulant of the cognitive network interference becomes:’

ki, (n) = pyp (n) Kz, cr) (). (33)

9The nth moment p VP (n) depends on the power control and intended
receiver selection strategies of the secondary network. For example, we have
Py ~ P Bern (Fg, (R*)) for the on-off secondary power control with the
maximum transmission range R*. Hence,

pyp (n) = P{"*Fr, (RY),

n/2

and p /g (n) — Py as R* — oo (no power control).

Aggregate interference power [dBm]

30 40 50 60
meters

Fig. 8. Aggregate interference power (dBm) generated by FBSs placed with
density A\ = 0.01 FBSs/m? in the first and fourth apartments of the first
row and in the third and fifth apartments of the second row for P = 0 dBm,
walls absorbing 20 dB of the radio signal, and |H;| ~ Nakagami (2, 1).

If the intended receiver is the nearest neighbor, then Ry ~
Rayleigh (1/ (27 A,)) follows from the properties of Poisson
point processes, where ), is the density of secondary receivers.

C. Non-circular Regions

When the primary and secondary users are confined in a
limited or finite region, the position of the primary user and
the shape of the region affect the distribution of the distance
between the primary and secondary users and, therefore, also
that of the aggregate interference. In the framework devel-
oped in Sections II and III, we implicitly consider the polar
coordinate system and place the primary user at the center
of the region. This coordinate system is natural for analyzing
the interferers scattered in a circular section. To extend this
framework to a non-circular region, we can first divide the area
of interest into infinitesimal circular sections (see for example,
Fig. 7) and use (30) to approximate the nth cumulant of the
cognitive network interference. Using this approach, we can
also consider any position of the primary user, shadowing with
multiple obstacles, and areas with different densities within the
region of interest.

Remark 3 (Femtocells): We can apply the approach for
non-circular regions to model the aggregate interference gen-
erated by femtocell base stations (FBSs) in the macrocell
networks [62]. Since the FBSs are randomly deployed without
any coordination with the macrocell network, they can cause
harmful interference to the macrocell users. For example,
using (30) with the cumulants for the full network activity
(10) instead of & Z(CeRe) (n), we can characterize the
statistics of the aggregate interference generated by the FBSs
in any environment. In Fig. 8, the aggregate interference
is calculated in one of the reference environments chosen
in the femtocells standardization process. Each large square
represents a (10 x 10)-meter square apartment. Each small
square represents a point where the aggregate interference
power is measured, which corresponds to the interference
affecting a macrocell user.

D. BEP Analysis

Consider a binary phase-shift keying (BPSK) narrowband
system in the presence of interference generated by the cogni-
tive network confined within the region R, where transmission
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0 5 10 15 20
By, /No [dB]
Fig. 9. BEP of BPSK versus E}, /Ny in the presence of the cognitive network
interference /st for the single-threshold protocol when SIR = —16, —12, and

—8 dB. A = 0.1 users/m? and ¢ = —40 dBm. For comparison, the BEP in
the absence of interference is also plotted (dashed line).

activities of the nodes are regulated according to (3). The
decision variable of the primary received symbol after the
correlation receiver can be written as

V =GUVE,+ s +W, (34)

where G is the channel fading affecting the victim signal;
U € {1,—1} is the information data; F}, is the energy per
bit; /g is the congnitive network interference; and W is the
zero-mean additive white Gaussian noise with variance Ny/2.
Conditioned on G, [y, and U = +1, the CF of the decision
variable V' can be written as

’lr/)V (]UJ|G, lsta U= +1)
N, 2
:exp{jw(G\/Eb—i—ISt)— Zw }

Assuming that G and /g are statistically independent, the CF
of the decision variable conditioned on U = +1 is given by

(35)

¢VUW“/:*4):¢@(ﬂU E%)¢m(ﬂ®exp<—
(36)

For the cognitive network interference /g, we use the
symmetric truncated-stable model /sy ~ Sy (v, & = 2/b, gst),
where the parameters 7/, and gs are determined by using
(25) and (26), respectively. Since /g is approximated as a
symmetric random variable, the average BEP is equal to the
BEP conditioned on U = +1, which can be expressed, using
the inversion theorem [63], as

P, =P{V <0|U=+1}

L, 1 [Ty (—jw|U = +1).—wv (+jw|U=41) "

(37)

2 27 J Jw

N0w2
1 .
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Normalized activating threshold ¢

Fig. 10. BEP of BPSK as a function of the normalized activating threshold ¢
for the single-threshold protocol when A = 0.1, 0.01, and 0.001 users/ m2.
Ey,/No = 10 dB and SIR = —10 dB. For comparison, the BEP in the
absence of interference is also plotted (dashed line).

V. NUMERICAL RESULTS

In this section, we illustrate the use of cognitive network
interference model to provide insight into the coexistence
between primary and secondary networks. In numerical ex-
amples, we consider dp,;, = 1 meter, dy.x = 60 meters, b
= 1.5, and Rayleigh fading for both primary and secondary
signals unless differently specified. We first investigate the
effect of the cognitive network interference on the BEP
performance of the primary user. In Fig. 9, the BEP of BPSK
versus F}, /Ny is depicted at the signal-to-interference ratio
SIR £ Ey /P = —16, —12, and —8 dB when the secondary
network having density A = 0.1 users/m? employs the single-
threshold protocol with ¢ = —40 dBm. We can observe from
Fig. 9 that the simulation agrees well with the analytical
results, which confirms the BEP analysis in Section IV-D and
again validates the truncated-stable interference model.

To ascertain the effect of the activating threshold and spatial
density of secondary users on the primary BEP performance,
Fig. 10 shows the BEP of BPSK as a function of the normal-
ized activity threshold ¢ for the single-threshold protocol at
Ey /Ny = 10 dB and SIR = —10 dB when A = 0.1, 0.01,
and 0.001 users/m?. As expected, we can observe that the
primary BEP degrades severely as the node density A and/or
the threshold ¢ increase. For a given secondary density, our
analytical framework enables us to design an activity threshold
that guarantees a target BEP at the primary user.

To demonstrate the effect of fading on the cognitive network
interference, we next consider Nakagami-m fading for both
primary and secondary signals, i.e., /Y; ~ Nakagami(m,1)
and |H;| ~ Nakagami(m,1). Fig. 11 shows the variance
(or equivalently, average power) of the cognitive network
interference /¢ as a function of the maximum distance d,ax
from the primary user for Nakagami fading parameters m = 1,
3, and 5. The secondary network has the user density A = 0.01
users/mg, each transmits with 4 = 0 dBm according to
the single-threshold protocol with ( = —30 dBm. This
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Fig. 11. Variance of the cognitive network interference /sy for the single-
threshold protocol as a function of the maximum distance dmax of the
region R when the Nakagami fading parameters m = 1, 3, and 5.
A = 0.01 users/m?, ¢ = —30 dBm, P = 0 dBm, and Nakagami-
m fading for primary and secondary links v/Y; ~ Nakagami(m,1) and
|H;| ~ Nakagami(m,1).

example reveals that for a fixed threshold (, as the fading
parameter m increases (less severe fading), the cognitive
network interference vanishes at the primary user due to rare
secondary activity. We can also see that milder fading (i.e.,
larger m) reduces the cognitive network interference power
for all the values of dy,.x. This is due to the fact that milder
fading decreases the activity of the secondary users in the
proximity of the primary user, leading consequently to a lower
cognitive interference power. Moreover, we observe that the
cognitive network interference power tends to saturate as dy,ax
increases since secondary users located far from the primary
user contribute marginally to aggregate interference.

The effect of power control on the cognitive network
interference is illustrated in Fig. 12, where the variance of
the cognitive network interference /g, for the single-threshold
protocol as a function of the activating threshold [ is depicted
in the presence of primary power control. In this example,
K = 0 dBm and the density and transmit power of the
secondary users are A = 0.1 users/m2 and 1 = 0 dBm,
respectively. The primary user is distributed in a circular area
defined by minimum and maximum distances dminp = 1 meter
and dmaxp = 1000 meters from the base station, respectively,
and its communication link experiences Rayleigh fading, i.e.,
|Hp| ~ Rayleigh (1/2). For the primary power control policy,
we set four power levels —5, —15, —25, —35 in dBm and the
minimum required power level to P* = —95 dBm. We can see
from the figure that if the primary network uses power control,
the variance of the cognitive network interference increases
for all the values of 3. This is due to the fact that when the
primary user is close to the base station, its transmission power
decreases. As a consequence, the secondary users will increase
their activity, leading to a larger number of active secondary
users.

In Fig. 13, the variance of the cognitive network interference
lta as a function of the maximum transmission range R*

T
—H8— power control on
—&O— power control off

Var {/g }

10 L L L

107 10
Activating threshold [

Fig. 12.  Variance of the cognitive network interference /sy for the single-
threshold protocol in the presence of primary power control as a function of
the activating threshold 5. A = 0.1 users/mQ, K =0 dBm, P = 0 dBm,
|Hp| ~ Rayleigh (1/2), dminp = 1 meter, and dmax,, = 1000 meters. The
power levels of the primary user are —5, —15, —25, and —35 dBm with the
minimum required power level P* = —95 dBm.

of the secondary users for the case of full activity (i.e.,
¢ — o0) is depicted in the presence of the on-off secondary
power control for various values of A. In this example,
VY; ~ Nakagami(2,1) and |H;| ~ Nakagami(2,1). For
the secondary power control policy, we set P = 0 dBm,
Py ~ Bern(Fg, (R*)), Rs ~ Rayleigh(1/(27),)), and
Ar = A Hence, 11 /5 (1) in (33) becomes 1—e~ ™", which
reveals that the interference power increases and approaches
exponentially to one (i.e., 1 = 0 dBm without power
control) as the transmission range R* increases. We can see
from Fig. 13 that the cognitive interference power reduces,
especially at low values of )\, as the range R* decreases.

Fig. 14 shows the PDFs of the cognitive network interfer-
ence /g, at the primary user in a (200 x 200)-meter square (see
Fig. 7) for the case of full activity ({ — oo) and P = 0 dBm.
The primary and secondary links have Nakagami-m fading,
ie., VY ~ Nakagami(2,1) and |H;| ~ Nakagami (2,1); and
the square region has two different secondary spatial densities:
A = 0.01 in the red sections and A = 0 (i.e., no secondary
users) in the yellow sections. The PDFs f, (z) are plotted
for three cases of the primary user location: i) at the center
of the large square, ii) at the center of the low (zero) density
region, and iii) at the top-right corner of the large square.
We can observe from Fig. 14 that the cognitive network
interference becomes less severe as the primary user moves
to the corner. This is due to the fact that the distance between
the primary and secondary users increases when the primary
user is located at the corner. Moreover, using this framework,
we can also consider a nonuniform spatial distribution of
the secondary users in the region of interest. Therefore, our
statistical interference model enables us to characterize the
position where the primary user is less vulnerable to the effect
of cognitive network interference.
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Fig. 13. Variance of the cognitive network interference /¢, for full activity
(¢ — o0) in the presence of the on-off secondary power control as a
function of the maximum transmission range R* of the secondary users when
A = 0.01, 0.001, 0.0001, and 0.00001 users/mQ. P = 0dBm, Ps ~
Bern (Fr, (R*)), Rs ~ Rayleigh (1/(27A;)), Ar = A, and Nakagami-
m fading for primary and secondary links +/Y; ~ Nakagami(2,1) and
|H;i| ~ Nakagami(2,1).

VI. CONCLUSIONS

In this paper, we proposed a new statistical model for
aggregate interference of cognitive networks, which accounts
for the sensing procedure, the spatial distribution of nodes,
secondary spatial reuse protocol, and environment-dependent
conditions such as path loss, shadowing, and channel fading.
We considered two types of secondary spatial reuse protocols,
namely, single-threshold and multiple-threshold protocols. For
each protocol, we derived the characteristic function and the
cumulant of the cognitive network interference at the primary
user. By using the truncated-stable distributions, we obtained
the statistical model for the cognitive network interference.
We further extended this model to include the effect of
power control and shadowing, and derived the BEP in the
presence of cognitive network interference. Numerical results
demonstrated the effectiveness of our model for capturing the
statistical behavior of the cognitive network interference in a
variety of scenarios. The framework developed in the paper
enables us to characterize cognitive network interference for
successful deployment of future cognitive networks. Further-
more, this framework can also be applied in the study of the
effect of inter-tier interference caused by randomly deployed
closed-access femtocells on the macrocell users in multi-tier
networks.

APPENDIX A
GLOSSARY OF STATISTICAL SYMBOLS

We adopt the convention of using upper-case letters without
serifs for random variables and the corresponding lower-case
letters with serifs for their realizations and dummy arguments.

f/m (l)

Fig. 14.
(PU) in a (200 x 200)-meter square (see Fig. 7) for full activity ({ — o0).
P; = 0 dBm and Nakagami-m fading for primary and secondary links v/Y; ~
Nakagami (2, 1) and |H;| ~ Nakagami (2, 1). The secondary spatial density
in the red sections, whereas A = 0 users/ m2
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is equal to A = 0.01 users/m
(i.e., no secondary users) in the yellow sections.

kx (n)

Bern (p)

S (7, 9)

Rayleigh (0?)

Nakagami (m, Q)

Expectation operator

Probability measure

Probability density function of X
Cumulative distribution function of X
Complementary cumulative
distribution function of X:

Fx (z) =1- Fx (x)

Characteristic function of X:

¥x (jw) 2 E {ej“’x} where j = /—1
nth moment of X: ux (n) 2 E{X"}
nth partial moment of X calculated
within the interval [I, u]:

,ug?t) (n,l,u) = fl" " fx () dz

nth cumulant of X:

Rx (n) 2 g S|
Bernoulli distribution wit% mean p:

if X ~Bern(p), then P{X =1} =p
and P{X=0}=1-p

Symmetric truncated-stable
distribution with the dispersion ~/,
characteristic exponent «,

and smoothing parameter g

Rayleigh distribution with the

parameter o2:

fx (x) = %exp(—%) , >0
Nakagami distribution with

the fading severity parameter m
and power parameter €

m ., 2m—1

2
Ix(z) = Qng;mlgi(m) exXp (_ mggzc ) )
x>0
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APPENDIX B
DERIVATIONS OF THE CUMULANTS

A. Cumulant of Zs ((;R) for the Single-Threshold Protocol

We start by deriving the nth cumulant of Zg, (¢;R) in (12)
for the single-threshold protocol. Using (14), we obtain

KZa(cR) (1 —27”/// 2" g ¢ (ry)

X fx (z) fy (y) drdydz
A2l fdmax
=27\ ux (n) / / {d /g)*} P o (y) drdy
max< dmin, y 2b

dni)mC max
2m\ i () | / P () drdy
0

dmin

2b
dmaxC dmax

+ 27 pux (n) /
a2 (y/Q)2

2b
_ 27 A pux (n) /dminc (d2 n_ g nb) b ) dy
0

ri=m fy (y) drdy

nb—2
2b
27\ px (n) / Fmax 2—nb
P (WO ] )y
21\ pix (n) 2—nb 2—nb 2b
= —— 221 (d —d ) By (d
le ) ( min max ) ( mmC)

nb—2 2
R (2 B )

7 Fmin s 'max

d12nax ME/Pt) (0 d2b C d2b )‘|

(38)

B. Cumulants of Z, (R) (k =1,2,...,
Threshold Protocol

We now derive the nth cumulant of Zj, (R) in (17) for Ay,
of the multiple-threshold protocol. Using (19), we obtain

Kz ( R) _271—/\/// amrt” nb]l[Ck 1Ck]( - )

X fx (@) f (y) drdyda
a2, G /mm{dmx,w/cwﬂlb} b

max{dmim(y/Ck)% }
x fy (y) drdy. (39)

1) k= 1: It is obvious from (39) that

N) for the Multiple-

=27\ ux (n)

2b
dmian*1

Kz,(R) (M) = Kz, (ciiR) (1) (40)

2) k= 2,3,...,N —1: We can evaluate the integral in
(39) by dividing the integration interval of y into three disjoint
ones, namely:

d?rfln(kfl < y< min {d?rl:axgk*h mlan}
min {d?rfdxck 1, mmck} < Yy < max {dmaxck*h mian} )
max {dmdxck 1, dmmck} < Y= < dmax<k7

involving two different cases d2% (. >

2 min = maka 1 and
dmka < dmakafl-

i) Case d. (i, > d2% (k—1: In this case, we have

Kz, (R) (n)

20, Cr (y/Ck=1) b o X
/ b fy () drdy
d

2b
dmka 1 min

mm max 1 :
/ / " fy (y) drdy
debmek 1 mm

/ ri=r fy (y) drdy (41)
2b ko y/Ck)zb

d
271—/\ ( )[dZ nb (Pt) (0 d2b Ckfl d2b Ckfl)

nb—2
2—nb
- Ck 2b (pt ’ d?rfmck—lv dIQIfaXCk_l
2b
(d?mr?b d?ndzb) ug/Pt) ( ) d?rfdxgk 15 dmka)

—2
+ C 2b (Pt) ( 2 7d121fm<ka d?x?dx(k)

= [QW Apx (n)

—d2 P (0 (0 ,dfflan,dffaka)]. (42)

ii) Case d?% (p < d?%, (i—1: Similarly, we have

Kz, (r) N (
A2 (y/Cr— 1)2”
=27\ pux ( / r' T fy (y) drdy
mm dmin
lzfaka 1 y/Ck71)2b
+ / / . = £y (y) drdy
dzh ¢ (y/Ck)20

d? Ck pdmax
" / / Py (y) drdy
(y/Ck) B

27r)\
- bui( 2 ldilsbqut) ’ dﬁfmgk71 ) dIQI?ka)
(pt) —nb
G 21 NY ( %
nb—2 nb—2
+ (ck G5 )

X ,ug/pt) ( 2b m1n<k7 dfr?axck—1>

?I?inck— 1, d?r?inck)

nb=2 2 —
+<k o ‘LLS/Pt) 2 7d121fax<k 1, mdx<k>

- dr2nax /‘E/pt) (07 d?rl;axgkfl ) d?rl:axé-k)‘| .

(43)
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Now, combining (42) and (43), we obtain the nth cumulant
of Zi (R) for k=2,3,..., N — 1 as follows:

2w px (n "
Kz (R) (n) = nb — é ) dIQ'IllI] b:u(pt) (07 d?r?in(k—la Amin)
nb—2
kjli /’I’E/pt) < 2b mlan 1, min)
+ C1 N(p ) (027 Amina Amax)
. 2
+ Ck 2b 5’pt) nb’ Amax, d?r?dxck
2b
— A2 P (0, Ao, 250G |, (44)
where Amin = min {dmaxgkfla mka} Amax =
max {dmdxgk,l, mka} and
(c1,¢2)
(diin” = d3,0) i At G > ARG

if dl%?lngk < dmdxgkfl'
(45)

= nb—2 nb—2
C 26 _ 26 2—nb
k k=1 > 2b ’

3) k = N: Since ( = oo, it is obvious that d?rlfmck >
d? (1 and the third term in (41) vanishes for k =
N. Hence, it follows immediately from (42) along with
,ug,pt) (0,a,00) = Fy (a) that

27\ pmx \n —n
RZN(R) (n)zi() dl?nm b:u(pt) (Ov d?rll)inck—la d?rll)axck—l)
nb—2
—nb
k— 1 gfpt) ( 2% d?ri)mgklad?r?akal)
+ (A’ — Aol By (ditucCi) |- (46)
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