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Abstract— In modern wireless systems employing diversity
techniques, combining all the available diversity branches may
not be feasible due to complexity and resource constraints. To
alleviate these issues, subset diversity (SSD) systems have been
proposed. Here, we develop a framework for evaluating the
symbol error probability for antenna SSD, where the signals from
a subset of antenna elements are selected and combined in the
presence of channel estimation error. We consider independent
identically distributed Rayleigh fading channels and use an esti-
mator structure based on the maximum likelihood (ML) estimate
which arises naturally as the sample mean of Np pilot symbols.
The analysis is valid for arbitrary two-dimensional signaling
constellations. The expressions give insight into the performance
losses of non-ideal SSD when compared to ideal SSD. Due to
estimation error, these losses occur in branch combining as well
as in branch selection. However, our analytical results show that
the practical ML channel estimator still preserves the diversity
order of an ideal SSD system with Nd branches. Finally, we
investigate the asymptotic signal-to-noise ratio penalty due to
estimation error.

Index Terms— Antenna subset diversity, non-ideal channel
estimation, pilot symbol estimation, weighting error, imperfect
channel knowledge.

I. INTRODUCTION

SUBSET diversity (SSD) is a method in which a subset of
the available diversity branches are selected, based on a

suitable criterion, and then combined, thereby improving the
performance of wireless systems [1]–[9]. Diversity presents
itself in a wireless channel in several realizations – spatial, po-
larization, angle, frequency, time, delay, multipath, multiuser,
etc. [10], [11]. Among them, spatial diversity using multiple
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antennas [1]–[3] plays an increasingly important role in next
generation wireless systems. Regardless of the specific type of
realization, it may not be feasible in many situations to utilize
all of the available diversity branches.

These complexity and performance issues have motivated
studies of diversity combining methods that process only a
subset of the available Nd diversity branches, but achieve
better performance than a single branch receiver. SSD arises
naturally as a generalization of these other diversity methods
which include selection diversity (SD), where the best branch
is selected, and hybrid selection/maximal-ratio combining (H-
S/MRC), where the best Ld out of Nd diversity branches are
selected. Such subset based schemes are a way to reduce
resource use, including power consumption and cost of RF
electronics, in receiver designs while maintaining the benefits
of increased diversity order [1]–[9].

Many previous studies of SSD have assumed that perfect
channel knowledge is available at the receiver. For example,
in [3], it was shown that ideal H-S/MRC achieves a diversity
order equal to the number of available diversity branches,
despite using only a subset of them. However, practical
diversity receivers must estimate the channel on each diversity
branch, and thereby incur a performance loss [13]–[23]. In the
case of SSD, the estimation plays a dual role; it affects both
the selection process as well as the combining mechanism.
Indeed, in an SSD receiver the subset of diversity branches
chosen is based on the receiver’s knowledge of the channel,
i.e., the estimated channel gains. Therefore, it is possible that
the receiver makes an erroneous selection.

In comparison to ideal SSD, practical SSD systems will
incur a loss in signal-to-noise ratio (SNR).1 This loss occurs
because completely coherent combining is not possible and
because the selection mechanism is not perfect. A measure of
such loss that is suitable for digital systems is the SNR penalty
required to maintain a target symbol error probability (SEP)
[3]. The SNR penalty is the increase in SNR required for a
non-ideal SSD system to achieve the same target SEP as an
ideal SSD system. In general the SNR penalty is a function

1Throughout this paper, we use the term SNR to refer to instantaneous
SNR. The term average SNR is explicitly used to describe the SNR averaged
over the fading ensemble.
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of the target SEP, and therefore also a function of the average
SNR.

In this paper we develop a framework for evaluating the
SEP of SSD with estimation error in independent identically
distributed (i.i.d.) Rayleigh fading. The framework is valid
for arbitrary two-dimensional signaling constellations. The
analysis is framed in terms of antenna SSD, where a subset
of antennas are selected, but the results are equally valid for
other forms of diversity.2 As a benchmark we also develop
expressions for the bit error probability (BEP) of binary phase-
shift keying (BPSK) signaling when the selection is ideal,
i.e., based on perfect knowledge of the channel gains, but
the combining utilizes the channel estimates. This illustrates
the role that channel estimation plays in the selection of the
diversity branches. Finally, we quantify the asymptotic SNR
penalty of SSD with non-ideal channel estimation.

This paper is organized as follows. In the next section, the
models for the system and estimator are presented. In Section
III we evaluate the SEP of SSD systems with estimation error.
Using the expressions we develop, Section IV presents expres-
sions for SSD based on specific selection policies. Section V
discusses the asymptotic SNR penalty of SSD with non-ideal
channel estimates and in Section VI we give numerical results.
Finally, in Section VII we present concluding remarks.

II. MODEL

We consider a diversity system with Nd available antenna
elements utilizing an arbitrary two-dimensional M -ary sig-
naling constellation with polygonal decision boundaries. The
received signal on the kth diversity branch, after demodulation,
matched filtering, and sampling, is given by

rk = hksi + nk k = 1, 2, . . . , Nd ,

where si, i = 1, 2, . . . , M , represents the complex message
symbol, hk is a complex, multiplicative gain introduced by
the channel on the kth branch, and nk represents a sample of
additive noise on the kth branch. The average symbol energy is
indicated by Es. The additive noise is modeled as a circularly
symmetric complex Gaussian random variable (r.v.) with zero
mean and variance N0/2 per dimension and is assumed to be
independent among the diversity branches. We consider i.i.d.
Rayleigh fading channels, that is, each channel gain can be
written as a circularly symmetric complex Gaussian r.v., hk =
hk,r + jhk,i, with E{hk} = 0 and E

{
|hk|2

}
= E

{
|hk,r|2

}
+

E

{
|hk,i|2

}
= 2σ2

h.
If the channel gains, h = [h1 h2 · · · hNd ], are known to

the receiver, the output of the ideal SSD combiner is given by

D =
∑

k : k∈O
h∗krk ,

where O is a set of indices indicating which subset of antenna
elements to combine. Note that O ⊆ {1, 2, . . . , Nd}. In
practice, however, h must be estimated; thus the combiner
output is

D =
∑

k : k∈ON

ĥ∗krk , (1)

2For example see [24], where subset diversity arises as multipath compo-
nents in a Rake receiver.

where ĥk is the estimate of the multiplicative gain, hk, of the
kth branch. Clearly, the performance of this combining scheme
greatly depends on the quality of the estimate ĥk. Note also
that the set of selected antenna elements is indicated by ON,
where, in this case, the antenna elements are chosen based on
their estimated channel gains.

One way to estimate the channel gains is by using pilot
symbols

pk,j =
√
Ephk + nk,j ,

where pk,j represents the pilot received on the kth branch
during the jth previous signaling interval and Ep is the energy
of the pilot symbol. An estimate can be formed by averaging
Np pilot symbols received within the coherence time of the
channel3

ĥk =

∑Np

j=1 pk,j√
EpNp

= hk + ek .

In this case ek is the complex Gaussian estimation error with
zero mean and variance σ2

e = N0/(2EpNp) per dimension.
The pilot energy is related to the signal energy through the
quantity ε = Ep/Es. Note that ĥk is a complex Gaussian
r.v. since it is the sum of two complex Gaussian r.v.’s. It is
important to stress that Np represents the number of received
pilot symbols used in forming an estimate of each branch.
Depending on the choice of transmitter and receiver architec-
tures of a SSD system, the actual number of transmitted pilots
may need to be larger to guarantee an estimate of each branch
based on Np pilots.4

The main goal of our analysis is to obtain insights into the
effect of non-ideal selection and non-ideal combining, where
the antenna elements are chosen based on the estimate of
the channel state at the receiver. Before doing so, we will
first consider the case where no errors are made during the
selection process, that is, when the selection mechanism has
perfect knowledge of the channel gains, but the combining
process uses the estimated channel gains. We refer to this
selection mechanism as “genie-aided selection.” While this is
not realistic, it allows us to isolate the impact of selection
errors from performance losses due to the imperfect combining
process.

A. Genie-Aided Selection

The genie-aided selection method operates on the squared
magnitude of the true channel gain,

gk � |hk|2 .
The vector of ordered magnitudes is then defined as5

g[Nd] �
[
g[1] g[2] · · · g[Nd]

]t
,

3Note that the channel estimation process is carried out to track changes
in the channel, and thus pilot symbols need only be transmitted with a rate
suitable to track the fading.

4For example, in the case of antenna diversity with Ld receiver chains,
if Ld < Nd it is not possible to receive the transmitted pilots on all
branches simultaneously. It can be shown that �Nd/Ld�Np pilots need to
be transmitted to ensure at least Np pilots are received for estimation on each
of the Nd branches.

5The notation (·)t denotes transpose.
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where
{
g[i]
}

is the ordered set of {gi} such that g[1] > g[2] >
. . . > g[Nd]. Note that the possibility of at least two equal g[l]’s
is excluded, since g[l] �= g[m] almost surely for continuous r.v.’s
g[l]’s [25], [26].

When the selection is based on g[Nd], the corresponding
index set denoted by OG is determined by a binary-valued
selection vector, a, with lth element al ∈ {0, 1} that indicates
which of the antenna elements are included in the combining
process. For example, al = 1 indicates that g[l] is included in
the combining process. In particular,

OG �
{
k : aχ(k) = 1

}
,

where χ(·) is the bijective mapping from the indices of the
unordered physical branches to the indices of the ordered
branches. In this case the ordering is with respect to the gk’s,
derived from ideal channel state information. It is convenient
to define the total contribution of the channel gains as

γG �
∑
k∈OG

|hk|2

=
Nd∑
l=1

alg[l] = 〈a, g[Nd]〉 .

Note that γG is the norm-square of the vector whose elements
are from the selected subset of fading gains. The performance
analysis for genie-aided selection is given in Section III.

B. Non-Ideal Selection

The non-ideal selection mechanism operates on the squared
magnitude of the channel gain estimates, defined as

g̃k �
∣∣∣ĥk∣∣∣2 .

The vector of ordered magnitudes is defined as

g̃[Nd] �
[
g̃[1] g̃[2] · · · g̃[Nd]

]t
,

such that g̃[1] > g̃[2] > . . . > g̃[Nd]. Again, note that the
possibility of at least two equal g̃[l]’s is excluded, since g̃[l] �=
g̃[m] almost surely for continuous r.v.’s g̃[l]’s.

When the selection is based on g̃[Nd], the corresponding
index set denoted by ON is determined by a binary-valued
selection vector, a, with lth element al ∈ {0, 1} that indicates
which of the antenna elements are included in the combining
process. For example, al = 1 indicates that g̃[l] is included in
the combining process. In particular,

ON �
{
k : a

χ̃(k)
= 1

}
,

where χ̃(·) is the bijective mapping from the indices of the
unordered physical branches to the indices of the ordered
branches. In this case the ordering is done with respect to
the g̃k’s, derived from the estimated channel state information.
The total contribution of the channel estimates is defined as

γN �
∑
k∈ON

∣∣∣ĥk∣∣∣2
=

Nd∑
l=1

alg̃[l] = 〈a, g̃[Nd]〉 .
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Fig. 1. The basic structure of an antenna SSD receiver.

Note that γN is the norm-square of the vector whose elements
consist of the selected subset of estimated fading gains.

Later, for both genie-aided and non-ideal selection, it will
be shown that particular diversity combining schemes, such as
H-S/MRC with non-ideal channel estimation, reduce to special
cases of the selection vector a. Figure 1 provides a conceptual
view of a SSD system utilizing non-ideal channel estimates.

III. ANALYSIS FOR SUBSET DIVERSITY

In this section we give expressions for the exact SEP for
SSD based on both the genie-aided and non-ideal selection
schemes outlined above. These expressions require only the
evaluation of a single integral with finite limits.

A. Performance Analysis for Genie-Aided Selection with Non-
Ideal Combining

Using a similar procedure as in [14], [17], the conditional bit
error probability of BPSK, conditioned on the set of channel
gains involved in the combining process, can be derived as

Pr{e | SG} =
1
4π

∫ π

−π

{
exp

[
−γGςΓ

8σ2
h

(1 − ζ2)2

g(θ; ζ)

]
+ f(θ; ζ, Ld) exp

[
−γGς Γ

8σ2
h

g(θ; ζ)
]}

dθ , (2)
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where

ζ =

∣∣√Np ε− 1
∣∣√

Np ε+ 1

ς =
(√

Np ε+ 1
)2

f(θ; ζ, Ld) =
1

2(2Ld−2)

Ld−1∑
n=1

cos
[
n
(
θ +

π

2

)] (
ζ−n − ζn

)
×
Ld−1−n∑
k=0

(
2Ld − 1

k

)
g(θ; ζ) = 1 + 2ζ sin θ + ζ2 .

Here, Γ = E

{
|hk|2

}
Es
N0

is the average SNR per branch. The
set SG consists of the channel gains included in the combining
process and is defined as

SG � {hk : k ∈ OG} .
Noting that the conditional BEP depends on SG only through
γG, the exact BEP for BPSK using genie-aided selection is
given by

PBPSK
e,GSNC(Γ) =

1
4π

∫ π

−π

{
MγG

[
− ςΓ

8σ2
h

(1 − ζ2)2

g(θ; ζ)

]
+ f(θ; ζ, Ld)MγG

[
− ςΓ

8σ2
h

g(θ; ζ)
]}

dθ , (3)

where MγG(s) � E{es γG} is the moment generating function
(m.g.f.) of γG. The subscript GSNC denotes “genie-aided
selection with non-ideal combining” and indicates that the
antenna selection is based on perfect knowledge of the chan-
nel, while the combining process uses estimated values.6 Note
that the expression in (3) is valid for SSD in i.i.d. Rayleigh
fading with BPSK signaling: we simply need to characterize
the m.g.f. of γG.

B. Performance Analysis for Non-Ideal Selection and Com-
bining

We begin by determining the SEP conditioned on the set of
channel estimates as determined by the index set ON through
the selection vector a. Then we average over the distribution
of the channel estimates to obtain the unconditional SEP. This
analysis is valid when the receiver makes decisions based on
a minimum distance criteria.

1) Conditional SEP: The decision variable, D, is given by

D =
∑

k: k∈ON

ĥ∗krk

=
∑

k: k∈ON

ĥ∗k
[(
ĥk − ek

)
si + nk

]
, (4)

where we have used the fact that ĥk = hk+ek. It is convenient
to define the set SN which consists of the channel estimates
for the branches included in the combining process as

SN �
{
ĥk : k ∈ ON

}
.

6While this may not be practically feasible in a real system, it allows us
to isolate the impact of selection errors from performance losses due to the
imperfect combining process.
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Fig. 2. A portion of the received signal constellation, and its associated
decision regions.

Theorem 1: The decision variable, D, when conditioned
on the set SN and the transmitted symbol si, is a circularly
symmetric complex Gaussian r.v. with conditional mean and
variance given by

E
{
D
∣∣SN, si

}
= siρ

2γN (5)

var
{
D
∣∣SN, si

}
= var

{
R{D} ∣∣SN, si

}
+ var

{
I{D} ∣∣SN, si

}
= 2

(
N0

2
+ |si|2 σ2

eρ
2

)
γN , (6)

where γN =
∑
k∈ON

∣∣ĥk∣∣2 and we have defined ρ2 � σ2
h

σ2
e+σ2

h

.

Proof: See the Appendix.
Note that the set SN consists of the channel estimates

included in the combining process; that is, the choice of
which branches are combined is solely based on the receiver’s
knowledge of the channel. This differs from conventional
analyses where it is often assumed that the receiver has perfect
knowledge of the channel. In general, a set of antennas chosen
based on the noisy estimates may be different from a set
chosen based on the true channel gains. Such a difference
is important to include in the analysis of a practical diversity
system.

For an arbitrary two-dimensional signaling constellation, the
decision variable can be represented in polar form as D =
RejΘ and we can write the conditional SEP as [27], [28]

Pr{e|SN, si} =
∑
j∈Bi

∫ φi,j

0

∫ ∞

ri,j(θ)

fR,Θ|SN
(r, θ) dr dθ , (7)

where Bi is the set consisting of the indices for the signaling
points that share a decision boundary with si and fR,Θ|SN

(r, θ)
is the joint distribution of the magnitude and phase of the
decision variable D given SN. Since D|SN is a complex,
circularly symmetric Gaussian r.v., R and Θ are conditionally



GIFFORD et al.: ANTENNA SUBSET DIVERSITY WITH NON-IDEAL CHANNEL ESTIMATION 1531

independent, and

fR,Θ|SN
(r, θ) =

r

2πσ2
exp

[
− r2

2σ2

]
, 0 ≤ θ < 2π , (8)

where σ2 =
(
N0
2 + |si|2 σ2

eρ
2
)
γN. Substituting (8) into (7)

gives

Pr{e|SN, si} =
1
2π

∑
j∈Bi

∫ φi,j

0

exp

[
− μ2

i,j

2σ2 sin2 (θ + ψi,j)

]
dθ ,

(9)

where we have used ri,j(θ) = μi,j

sin(θ+ψi,j)
and φi,j , ψi,j are

angles that describe the decision region corresponding to si
(see Fig. 2 for an example7). Using the law of cosines, the
quantity μi,j is related to the transmitted signal points after
reception as

μi,j =
1
2

√
Eswi,jρ

2γN ,

where wi,j = ξi + ξj − 2
√
ξi ξj cos (θi − θj) and the signal

points are represented in polar form as si =
√
ξiEs e

jθi with
ξi � Ei

Es
. Simplifying gives

Pr{e|SN, si}

=
1
2π

∑
j∈Bi

∫ φi,j

0

exp
[
−γN

wi,jEsρ
4

8σ2 sin2 (θ + ψi,j)

]
dθ . (10)

2) Exact SEP: Since the conditional SEP in (10) depends
on SN only through γN, the SEP is found by averaging (10)
over the distribution of γN:

Pr{e|si}

=
1
2π

∑
j∈Bi

∫ ∞

0

∫ φi,j

0

exp
[
−x wi,jEsρ

4

8σ2 sin2 (θ + ψi,j)

]
× fγN(x) dθ dx

=
1
2π

∑
j∈Bi

∫ φi,j

0

MγN

[
− wi,jEsρ

4

8σ2 sin2 (θ + ψi,j)

]
dθ , (11)

where MγN(s) � E{es γN} is the m.g.f. of γN. The overall error
probability can be determined by averaging Pr{e|si} over the

7Note that the decision region for s7 is semi-infinite, that is, there are no
boundaries to the upper left. For the purposes of calculation of (9) in this

special case, we use φ7,6 = π−ψ7,6, φ7,8 = π− sin−1

(
μ7,8
μ7,2

sinψ7,2

)
,

and ψ7,8 = 0.

a priori probability that symbol si is transmitted:

Pe,NSNC(Γ)

=
M∑
i=1

pi
∑
j∈Bi

1
2π

∫ φi,j

0

MγN

⎡⎣− wi,jΥi(Γ) ρ
2

σ2
h

8 sin2 (θ + ψi,j)

⎤⎦ dθ ,
(12)

where

Υi(Γ) � ΓNp ε(
1
Γ +Np ε+ ξi

) .
The subscript NSNC denotes “non-ideal selection with non-
ideal combining” and indicates that both the antenna selection
process and combining mechanism are based solely on the
estimated channel knowledge. Note that the expression in (12)
is valid for SSD in i.i.d. Rayleigh fading with an arbitrary
two-dimensional signaling constellation: we simply need to
characterize the m.g.f. of γN.

C. Expressions for the m.g.f. of γG and γN

Regardless of the selection mechanism, whether genie-aided
or non-ideal, we are interested in finding the m.g.f. of γ,
Mγ (·), where

γ = 〈a, z[N ]〉
z[N ] � [z[1] z[2] · · · z[N ]]t

and
{
z[i]
}

is the ordered set of {zi}, denoting the squared
magnitudes of i.i.d. complex Gaussian r.v.’s, such that z[1] >
z[2] > . . . > z[N ].

In general direct analysis of γ is prohibitively complicated,
involving N nested integrals. However, this can be alleviated
by applying the results of the Virtual Branch technique [2].
The ordered set of squared magnitudes, z[N ], can be related to
a new set of virtual branch squared magnitudes, Vn’s, using

z[N ] = T VBV N ,

where T VB : R
N → R

N is the upper triangular virtual branch
transformation matrix given by

T VB =

⎡⎢⎢⎢⎣
1 1

2 · · · 1
N

1
2 . . . 1

N
. . .

...
1
N

⎤⎥⎥⎥⎦ (13)

and V N � [V1, V2, . . . , VN ]t. Since T VB is upper triangular,
the Jacobian of the transformation is easily obtained, and one
can then show that the virtual branch variables are i.i.d. with
m.g.f. given by

MVn
(s) � E

{
es Vn

}
=

1
1 − E{zn} s .

PBPSK
e,GSNC(Γ) =

1
4π

∫ π

−π

{
Nd∏
n=1

(
1 + bn

ςΓ
4

[
(1 − ζ2)2

g(θ; ζ)

])−1

+ f(θ; ζ, Ld)
Nd∏
n=1

(
1 + bn

ςΓ
4
g(θ; ζ)

)−1
}
dθ (16)

Pe,NSNC(Γ) =
M∑
i=1

pi
∑
j∈Bi

1
2π

∫ φi,j

0

Nd∏
n=1

(
1 + bn

wi,jΥi(Γ)
4 sin2 (θ + ψi,j)

)−1

dθ (17)
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Noting that γ = 〈a, T VBV N 〉 and using the fact that the
virtual branch variables are independent, it can be shown that

Mγ(s) =
N∏
n=1

MVn
(bns) ,

where bn is the nth element of b = T t
VBa. Applying the

above result to the case of genie-aided and non-ideal selection,
respectively, gives:

MγG(s) =
Nd∏
n=1

1

1 − E

{
|h|2

}
bns

=
Nd∏
n=1

1
1 − 2σ2

hbns
(14)

MγN(s) =
Nd∏
n=1

1

1 − E

{∣∣∣ĥ∣∣∣2} bns =
Nd∏
n=1

1

1 − 2σ
2
h

ρ2 bns
. (15)

D. Error Probability Expressions

Combining (3) and (14) gives the complete expression for
the SEP of SSD with GSNC as shown in (16) at the bottom
of the previous page. Similarly, combining (12) and (15) gives
the complete expression for the SEP of SSD with NSNC as
shown in (17) at the bottom of the previous page.

We can further specialize (17) for the cases of MPSK and
MQAM. For the case of MPSK, where the symbols have equal
energy, (17) reduces to8

PMPSK
e,NSNC(Γ) =

1
π

∫ M−1
M π

0

Nd∏
n=1

(
1 + bn

Υ(Γ) cMPSK

sin2 θ

)−1

dθ ,

(18)

where cMPSK = sin2
(
π
M

)
. Note that in (18) we have used the

fact that wi,j = 2 − 2 cos
(

2π
M

)
= 4 sin2

(
π
M

)
. For the case of

MQAM,

PMQAM
e,NSNC(Γ)

=
1
M

∑
i

ωa
i

2π

∫ π
2

0

Nd∏
n=1

(
1 + bn

Υi(Γ) cMQAM

sin2
(
θ + π

4

))−1

dθ

+
ωb
i

2π

∫ 3π
4

0

Nd∏
n=1

(
1 + bn

Υi(Γ) cMQAM

sin2 θ

)−1

dθ ,

(19)

where cMQAM = 3/(2(M−1)) and ωa
i , ω

b
i , and ξi are given in

Table I for M = {4, 16, 64, 256}. Note that the summation
in (19) is performed over the nonzero terms given in Table I
in the column corresponding to a particular value of M .

Using standard techniques (see, for example [2], [8],
and [27]), the exact SEP for SSD with an arbitrary two-
dimensional signaling constellation and perfect channel state
information can be derived as

Pe,ISIC(Γ)

=
M∑
i=1

pi
∑
j∈Bi

1
2π

∫ φi,j

0

Nd∏
n=1

(
1 + bn

wi,jΓ
4 sin2(θ + ψi,j)

)−1

dθ.

(20)

8For MPSK ξi = 1 ∀i, thus Υi(Γ) does not depend on i, in which case
we simply write Υ(Γ).

TABLE I

PARAMETERS FOR MQAM SIGNALING CONSTELLATIONS

ξi
i ωa

i ωb
iM = 4 M = 16 M = 64 M = 256

1 1 9/5 7/3 45/17 0 8
2 1 37/21 197/85 8 16
3 1/5 25/21 169/85 16 0
4 29/21 173/85 8 16
5 17/21 29/17 32 0
6 3/7 121/85 16 0
7 25/21 9/5 8 16
8 13/21 25/17 32 0
9 5/21 101/85 32 0
10 1/21 81/85 16 0
11 137/85 8 16
12 109/85 32 0
13 1 32 0
14 13/17 32 0
15 49/85 16 0
16 25/17 8 16
17 97/85 32 0
18 73/85 32 0
19 53/85 32 0
20 37/85 32 0
21 5/17 16 0
22 117/85 8 16
23 89/85 32 0
24 13/17 32 0
25 9/17 32 0
26 29/85 32 0
27 1/5 32 0
28 9/85 16 0
29 113/85 8 16
30 1 32 0
31 61/85 32 0
32 41/85 32 0
33 5/17 32 0
34 13/85 32 0
35 1/17 32 0
36 1/85 16 0

The subscript ISIC means “ideal selection with ideal combin-
ing” and is used to indicate that both the selection process and
combining mechanism are based on perfect knowledge of the
channel.

E. Asymptotic Expressions

For large SNR, we can consider the behavior of Pe,GSNC(Γ).
From (16) we have,

PBPSK
Ae,GSNC(Γ)

=
K

ΓNd

(
4
ς

)Nd 1
4π

∫ π

−π

{[
g(θ; ζ)

(1 − ζ2)2

]Nd

+
f(θ; ζ, Ld)

[g(θ; ζ)]Nd

}
dθ ,

(21)

where PAe(Γ) indicates the probability of error for asymptot-

ically large Γ and K =
(∏Nd

n=1
1
bn

)
. Similarly, for the case
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TABLE II

EXPRESSIONS FOR THE ASYMPTOTIC SEP, PAe(Γ)

NSNC ISIC

MPSK
K

ΓNd

(
Np ε+ 1

Np ε

)Nd
1

π

∫ M−1
M

π

0

(
sin2 θ

cMPSK

)Nd

dθ
K

ΓNd

1

π

∫ M−1
M

π

0

(
sin2 θ

cMPSK

)Nd

dθ

MQAM

K

ΓNd

1

M

∑
i

(
Np ε+ ξi

Np ε

)Nd
[
ωa

i

2π

∫ π
2

0

(
sin2

(
θ + π

4

)
cMQAM

)Nd

dθ

+
ωb

i

2π

∫ 3π
4

0

(
sin2 θ

cMQAM

)Nd

dθ

]
K

ΓNd

1

M

∑
i

[
ωa

i

2π

∫ π
2

0

(
sin2

(
θ + π

4

)
cMQAM

)Nd

dθ

+
ωb

i

2π

∫ 3π
4

0

(
sin2 θ

cMQAM

)Nd

dθ

]

of NSNC, (17) gives

PAe,NSNC(Γ)

=
K

ΓNd

M∑
i=1

pi

(
Np ε+ ξi
Np ε

)Nd

︸ ︷︷ ︸
�Ci

×
∑
j∈Bi

1
2π

∫ φi,j

0

(
4 sin2 (θ + ψi,j)

wi,j

)Nd

dθ

︸ ︷︷ ︸
� Ii

. (22)

Equation (22) has several important implications: 1) SSD with
non-ideal channel estimation preserves the diversity of the
overall system (Nd) despite the fact that only a subset of
antenna elements are selected and combined (Ld out of Nd) in
the presence of estimation error, 2) the quantity Ci completely
captures the degradation due to the channel estimation, and 3)
the quantity Ii captures the geometry of the signaling scheme.

Similar to (22), the asymptotic behavior of ISIC for large
Γ can be obtained from (20) as

PAe, ISIC(Γ)

=
K

ΓNd

M∑
i=1

pi
∑
j∈Bi

1
2π

∫ φi,j

0

(
4 sin2(θ + ψi,j)

wi,j

)Nd

dθ

=
K

ΓNd

M∑
i=1

piIi . (23)

Note that for the case of BPSK (23) reduces to

PBPSK
Ae, ISIC(Γ) =

K

ΓNd

Γ
(

1
2 +Nd

)
2
√
πΓ(1 +Nd)

, (24)

where Γ(·) denotes the Gamma function.
As noted in Section III-B our NSNC results are applicable

for arbitrary two-dimensional signaling schemes. Table II
summarizes the asymptotic behavior of Pe(Γ) for MPSK and
MQAM for the cases of non-ideal and ideal selection and
combining. One can easily generalize these results to other
two-dimensional signaling constellations.

IV. SPECIAL CASES

In this section we characterize the SEP for SSD with non-
ideal selection and combining for a few specific selection
policies. Specifically, we examine the case of H-S/MRC,
MRC, and SD with non-ideal channel estimation.

A. H-S/MRC

In H-S/MRC the receiver combines the signals from the Ld

antennas with the largest estimated channel gain magnitude
out of Nd available antennas. For this selection policy

a = [1 1 · · · 1︸ ︷︷ ︸
Ld terms

0 0 · · · 0]t

and

bn =

{
1 , n ≤ Ld
Ld
n , otherwise.

Using the resulting bn gives

Pe,H-S/MRC(Γ)

=
M∑
i=1

pi
∑
j∈Bi

1
2π

∫ φi,j

0

(
1 +

wi,jΥi(Γ)
4 sin2 (θ + ψi,j)

)−Ld

×
Nd∏

n=Ld+1

(
1 +

Ld

n

wi,jΥi(Γ)
4 sin2 (θ + ψi,j)

)−1

dθ .

(25)

For MPSK and MQAM signaling, (25) reduces to the expres-
sions shown in Table III.

B. MRC

In the case of MRC, the receiver combines the signals from
all the available antennas. This selection policy amounts to
setting a to a vector of ones;

a = [1 1 · · · 1︸ ︷︷ ︸
Ld = Nd terms

]t ,

giving bn = 1 ∀n. Using this selection policy gives

Pe,MRC(Γ)

=
M∑
i=1

pi
∑
j∈Bi

1
2π

∫ φi,j

0

(
1 +

wi,jΥi(Γ)
4 sin2 (θ + ψi,j)

)−Nd

dθ .

(26)

For MPSK and MQAM signaling, (26) reduces to the expres-
sions shown in Table III. These results can also be obtained
by setting Ld = Nd in the equations given for H-S/MRC.
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TABLE III

EXPRESSIONS FOR Pe,NSNC(Γ) UNDER SPECIFIC SELECTION POLICIES AND MODULATION FORMATS

MPSK MQAM

H-S/MRC

1

π

∫ M−1
M

π

0

(
1 +

Υ(Γ) cMPSK

sin2 θ

)−Ld

×
Nd∏

n=Ld+1

(
1 +

Ld

n

Υ(Γ) cMPSK

sin2 θ

)−1

dθ

1

M

∑
i

ωa
i

2π

∫ π
2

0

(
1 +

Υi(Γ) cMQAM

sin2
(
θ + π

4

))−Ld

×
Nd∏

n=Ld+1

(
1 +

Ld

n

Υi(Γ) cMQAM

sin2
(
θ + π

4

))−1

dθ

+
ωb

i

2π

∫ 3π
4

0

(
1 +

Υi(Γ) cMQAM

sin2 θ

)−Ld

×
Nd∏

n=Ld+1

(
1 +

Ld

n

Υi(Γ) cMQAM

sin2 θ

)−1

dθ

MRC 1

π

∫ M−1
M

π

0

(
1 +

Υ(Γ) cMPSK

sin2 θ

)−Nd

dθ

1

M

∑
i

ωa
i

2π

∫ π
2

0

(
1 +

Υi(Γ) cMQAM

sin2
(
θ + π

4

))−Nd

dθ

+
ωb

i

2π

∫ 3π
4

0

(
1 +

Υi(Γ) cMQAM

sin2 θ

)−Nd

dθ

SD

1

π

∫ M−1
M

π

0

(
1 +

Υ(Γ) cMPSK

sin2 θ

)−1

×
Nd∏

n=2

(
1 +

1

n

Υ(Γ) cMPSK

sin2 θ

)−1

dθ

1

M

∑
i

ωa
i

2π

∫ π
2

0

(
1 +

Υi(Γ) cMQAM

sin2
(
θ + π

4

))−1

×
Nd∏

n=2

(
1 +

1

n

Υi(Γ) cMQAM

sin2
(
θ + π

4

))−1

dθ

+
ωb

i

2π

∫ 3π
4

0

(
1 +

Υi(Γ) cMQAM

sin2 θ

)−1

×
Nd∏

n=2

(
1 +

1

n

Υi(Γ) cMQAM

sin2 θ

)−1

dθ

C. SD

For SD, the receiver uses only the signal from the an-
tenna with the largest estimated channel gain magnitude. This
amounts to using the following selection vector

a = [1 0 0 · · · 0︸ ︷︷ ︸
Nd − 1 terms

]t ,

and

bn =

{
1 , n = 1
1
n , otherwise.

Using this policy, the SEP is given by

Pe, SD(Γ)

=
M∑
i=1

pi
∑
j∈Bi

1
2π

∫ φi,j

0

(
1 +

wi,jΥi(Γ)
4 sin2 (θ + ψi,j)

)−1

×
Nd∏
n=2

(
1 +

1
n

wi,jΥi(Γ)
4 sin2 (θ + ψi,j)

)−1

dθ .

(27)

For MPSK and MQAM signaling, (27) reduces to the expres-
sions shown in Table III. These results can also be obtained
by setting Ld = 1 in the equations given for H-S/MRC.

V. SNR PENALTY

We can examine the penalty that a non-ideal antenna subset
diversity system suffers in relation to an ideal system. In com-
parison to ideal SSD, SSD with non-ideal channel estimation
will incur a loss in SNR, due to the fact that the selection
mechanism is imperfect and completely coherent combining is
not possible. For analog systems, the SNR penalty is defined
in terms of the degradation in the SNR. Instead, as in [3],
[15], we consider a measure that is more suitable for digital
systems; the SNR penalty required to maintain a target SEP.

For a digital communication system, we define the SNR
penalty, β, as the increase in SNR required for the SSD system
under consideration to achieve the same target SEP as ideal
SSD.9 Implicitly, we have

Pe,NSNC(βΓ) = Pe, ISIC(Γ) ,

where Pe,NSNC(·), Pe, ISIC(·), β, and Γ are the SEP for antenna
subset diversity with non-ideal selection and combining, the
SEP for SSD with ideal selection and combining, the SNR
penalty, and the average branch SNR, respectively.

9Several other penalties involving these systems can also be defined. The
interested reader is directed to [29] where the authors investigate them in
detail.
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Fig. 3. Performance of GSNC with Nd = 16, ε = 1, for various Ld and
Np. Combining all 16 branches is indicated with circles.

Note that the SNR penalty is a function of the target SEP,
and therefore a function of the average SNR; that is, β = β(Γ).
A closed form expression for β is difficult to obtain, if at
all possible. However, using (22) and (23) we can derive the
asymptotic SNR penalty, βA, for large SNR, such that

PAe,NSNC(βA,NSNCΓ) = PAe, ISIC(Γ) .

From (22) and (23) the SNR penalty of NSNC can be written
as

βA,NSNC =

⎛⎜⎝
∑M
i=1 pi

(
Np ε+ξi

Np ε

)Nd

Ii∑M
i=1 piIi

⎞⎟⎠
1

Nd

. (28)

It is important to note that (28) has no dependence on Ld or the
particular selection policy (determined by the binary valued
selection vector a). This means that for a particular system,
regardless of signaling constellation, changing the selection
policy will have no effect on the asymptotic SNR penalty.
Furthermore, for an arbitrary signaling constellation, it can be
shown that

Np ε+ ξmin

Np ε
≤ βA,NSNC ≤ Np ε+ ξmax

Np ε
, (29)

where ξmin � mini=1, ...,M ξi and ξmax � maxi=1, ...,M ξi.
For the specific case of MPSK it can be shown, using results

from Table II, that the asymptotic SNR penalty reduces to

βMPSK
A,NSNC =

Np ε+ 1
Np ε

. (30)

The asymptotic SNR penalty given in (30) has interesting
implications. It states that for asymptotically large SNR, the
penalty for an MPSK SSD system with non-ideal channel
estimation as compared to an ideal SSD system is the same
regardless of the number of antennas used in the combining
process. That is, asymptotically, only the estimation accuracy
(Np ε) plays a role in determining the SNR penalty. Figures
7 – 8 show βA as a function of Np ε for several values of Ld

and Nd.

Similarly, for the case of GSNC, we can derive the asymp-
totic SNR penalty, such that

PBPSK
Ae,GSNC(βBPSK

A,GSNCΓ) = PBPSK
Ae, ISIC(Γ) .

Then, the SNR penalty, βBPSK
A,GSNC, can be computed, using (21)

and (24) as

βBPSK
A,GSNC =

4
ς

{
Γ(1 +Nd)

2
√
π Γ

(
1
2 +Nd

)
×
∫ π

−π

([
g(θ; ζ)

(1 − ζ2)2

]Nd

+
f(θ; ζ, Ld)

[g(θ; ζ)]Nd

)
dθ

} 1
Nd

.

(31)

Unlike the case of NSNC, from (31) we see that βBPSK
A,GSNC has

a dependence on both Ld and Nd.

VI. NUMERICAL RESULTS AND DISCUSSION

The analytical framework developed in the previous section
can be used to evaluate the performance of arbitrary two-
dimensional signaling constellations for SSD systems.10 For
brevity, and as a point of comparison, we restrict our dis-
cussion to BPSK signaling for H-S/MRC systems employing
GSNC or NSNC, where the channel estimation process for
each branch is based on the reception of Np pilot symbols.
As pointed out earlier, the actual number of transmitted pilots
may need to be larger, depending on the specific architecture
of the SSD system, to guarantee that each channel estimate is
based on Np pilots.

Figures 3 – 6 show the performance of BPSK signaling
for SSD systems employing GSNC or NSNC operating in
Rayleigh fading. In all figures, performance of non-ideal
systems is shown with dashed or dotted lines, while solid lines
indicate the performance of systems with ISIC. The curves are
labeled with Ld/Nd indicating that Ld out of Nd available
antennas are combined. The ISIC curves serve as a lower
bound on the performance of SSD systems employing GSNC
and NSNC. It is immediately apparent from the figures that
the diversity order of non-ideal systems, whether GSNC or
NSNC, is preserved and matches that of a theoretical system
employing ISIC as shown analytically in Sec. III-E.

Specifically, Figs. 3 and 4 indicate that, for a fixed number
of pilot symbols and available antennas (i.e., fixed Np and Nd),
performance improves as the number of combined antennas
increases. In addition, one can see that there is a significant
difference in performance between GSNC and NSNC for low
Ld and few pilot symbols. For example, with Ld = 1 and
Np = 2 the required SNR at a BEP of 10−3 is about 3 dB
in GSNC and about 5 dB in NSNC. The curves also indicate
that this difference becomes less significant as either Ld or Np

increases.
Figure 3 shows that the performance loss of GSNC com-

pared to ISIC, due solely to non-ideal combining, increases
with the number of combined branches. This behavior is
further verified by Fig. 7. In this figure, βA can be viewed

10Extensive simulations were also performed and the results are in agree-
ment with the theoretical analysis.
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Fig. 5. Performance of GSNC with Ld = 2, ε = 1, for various Nd and Np.

as the performance loss between GSNC or NSNC and ISIC.11

From this figure, we see that when Nd is fixed and Ld increases
the SNR penalty of GSNC increases. Intuitively, this is the
case because under GSNC the branches are selected perfectly,
thus for Ld = 1 the branch chosen will have the best channel
quality out of all branches, yielding the smallest penalty. When
Ld = 2, the next branch that is chosen will have lower quality
than the first, causing an increase in the penalty. The effects
are similar as more branches are added, until Ld = Nd when
the penalty matches that of NSNC.

This is in contrast to Fig. 4, which shows that increasing
the number of combined diversity branches has little effect
on the performance loss of NSNC compared to ISIC. This is
further verified by Fig. 7, where all the SNR penalty curves
for NSNC are identical regardless of Ld.

Figures 5 and 6 show the performance of SSD systems with
GSNC or NSNC for fixed Ld and various values of Nd. Again,
one can see that there is a significant difference in performance
between GSNC and NSNC when few pilot symbols are used.
For example, for 2/8 and Np = 2, the required SNR at a BEP
of 10−3 is about 3 dB in GSNC and about 4.5 dB in NSNC.

11This loss, or SNR penalty, is defined in terms of the average branch SNR
in (28) and (31).
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Fig. 6. Performance of NSNC with Ld = 2, ε = 1, for various Nd and Np.

These figures also indicate that the difference increases with
increasing Nd or decreasing Np.

Figure 5 indicates that the performance loss of GSNC
compared to ISIC, decreases as the number of available
diversity branches increases. This effect is further verified by
Fig. 8. The figure indicates that, for fixed Ld, the performance
loss suffered by GSNC decreases as Nd increases. This can be
justified because under GSNC branches are perfectly selected,
thereby yielding higher quality estimates for the combining
process. In other words, as the number of available diversity
branches increases, while the number of combined branches
remains fixed, the quality of the estimates improves, thus
yielding higher performance.

This is in contrast to Fig. 6 which shows that increasing the
number of available diversity branches has little effect on the
performance loss of NSNC compared to ISIC. This is further
confirmed by Fig. 8, where all the SNR penalty curves for
NSNC are identical regardless of Nd.

Finally, note that for the case of MRC (Ld = Nd) the curves
for GSNC and NSNC are identical for a given Np, as expected.
This can be seen by comparing the 16/16 curves denoted by
circles in Figs. 3 and 4, or the 2/2 curves in Figs. 5 and 6.
This is because the selection mechanism plays no role in the
performance of the system when combining all of the available
diversity branches, making GSNC and NSNC equivalent.

VII. CONCLUSION

We developed an analytical framework for evaluating the
SEP for SSD, where the signals from a subset of diversity
branches are selected and combined in the presence of channel
estimation error. We considered i.i.d. Rayleigh fading channels
and used an estimator structure based on the ML estimate
which arises naturally as the sample mean of Np pilot sym-
bols. The framework is valid for arbitrary two-dimensional
signaling constellations. The analysis and numerical results
indicated that SSD systems employing GSNC or NSNC suffer
performance degradation, due to the effects of channel esti-
mation, compared to SSD systems employing ISIC. Despite
this, our analytical results showed that the practical ML
channel estimator still preserves the diversity order of an
ideal SSD system with Nd branches. As a benchmark, we
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analyzed the performance of GSNC, where the estimation
error only impacts the combining process, not the selection
process, and showed that the SNR penalty depends on both
Nd and Ld. However, this was not the case for NSNC, where
channel estimation impacts both branch selection and branch
combining. In this case, the asymptotic SNR penalty has a
surprising lack of dependence on both the number of available
diversity branches and the number of utilized branches.

APPENDIX

DISTRIBUTION OF THE DECISION VARIABLE

In this appendix we prove that D conditioned on SN is a
nonzero mean, circularly symmetric complex Gaussian r.v.

Proof: To facilitate analysis, D may be rewritten as

D =
∑

k: k∈ON

dk , (32)

where we have defined the auxiliary variables

dk � ĥ∗k
[(
ĥk − ek

)
si + nk

]
.

Expanding dk gives (33), shown at the bottom of the page,
where the subscripts (·)k,r, (·)k,i indicate the real and imagi-
nary parts of the kth term, respectively.

Since each dk depends on the channel only through ĥk,
conditioning D on the set SN is equivalent to conditioning
each dk (for k ∈ ON) on the particular ĥk on which it depends.
Thus, we proceed by examining the conditional distributions
of the real and imaginary parts of each dk, when conditioned
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Fig. 8. SNR penalty as a function of Np ε, for Ld = 2 and various Nd.

on ĥk. From (33) we have,

R{dk} = si,r

∣∣∣ĥk∣∣∣2 +
[
ĥk,rnk,r + ĥk,ink,i

]
−
[
si,rĥk,r + si,iĥk,i

]
ek,r

−
[
si,rĥk,i − si,iĥk,r

]
ek,i (34)

I{dk} = si,i

∣∣∣ĥk∣∣∣2 +
[
ĥk,rnk,i − ĥk,ink,r

]
+
[
si,rĥk,i − si,iĥk,r

]
ek,r

−
[
si,rĥk,r + si,iĥk,i

]
ek,i (35)

The first term in (34), conditioned on ĥk, is a constant. The
second term is distributed as a zero mean Gaussian r.v. with
variance (N0/2)|ĥk|2. For the third and fourth terms, we first
need to find the conditional distribution of ek,r and ek,i given
ĥk. Using Bayes’ rule we have

fei|ĥi
(x|y) = fer|ĥr

(x|y) =
fĥr|er

(y|x)fer(x)

fĥr
(y)

=

1√
2πσ2

h

exp
{
− (y−x)2

2σ2
h

}
1√

2πσ2
e

exp
{
− x2

2σ2
e

}
1√

2π(σ2
h
+σ2

e)
exp

{
− y2

2(σ2
h
+σ2

e)

}

=
1√
2π

√
σ2
h + σ2

e

σ2
hσ

2
e

exp

⎧⎪⎨⎪⎩−
(
x− σ2

e

σ2
e+σ2

h

y
)2

2 σ2
h
σ2

e

σ2
h
+σ2

e

⎫⎪⎬⎪⎭ .

(36)

Thus, conditioned on ĥk, ek is a complex Gaussian r.v.
with mean ĥk σ

2
e/(σ

2
e + σ2

h) and variance per dimension
σ2
hσ

2
e/(σ

2
h + σ2

e). Using these results, we see that R{dk}
is a conditionally Gaussian random variable with mean and

dk = si

∣∣∣ĥk∣∣∣2 +
[
ĥk,rnk,r + ĥk,ink,i

]
+ j

[
ĥk,rnk,i − ĥk,ink,r

]
− si

[
ĥk,rek,r + ĥk,iek,i

]
+ jsi

[
ĥk,iek,r − ĥk,rek,i

]
(33)



1538 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 5, MAY 2008

variance given by

E

{
R{dk}

∣∣ ĥk} = si,r

∣∣∣ĥk∣∣∣2 σ2
h

σ2
e + σ2

h

(37)

var
{
R{dk}

∣∣ ĥk} =
∣∣∣ĥk∣∣∣2(N0

2
+ |si|2 σ2

hσ
2
e

σ2
h + σ2

e

)
. (38)

Using a similar argument it can be shown that the random
variable I{dk} in (35) is also conditionally Gaussian with

E

{
I{dk}

∣∣ ĥk} = si,i

∣∣∣ĥk∣∣∣2 σ2
h

σ2
e + σ2

h

(39)

var
{
I{dk}

∣∣ ĥk} =
∣∣∣ĥk∣∣∣2(N0

2
+ |si|2 σ2

hσ
2
e

σ2
h + σ2

e

)
. (40)

Furthermore, it can be shown that

E

{
R{dk} I{dk}

∣∣ ĥk}− E

{
R{dk}

∣∣ ĥk}E

{
I{dk}

∣∣ ĥk} = 0 .

Therefore, when conditioned on ĥk, R{dk} and I{dk} are
uncorrelated Gaussian r.v.’s and hence they are conditionally
independent. Thus, dk is a conditionally circularly symmetric
complex Gaussian r.v. with nonzero mean. Since D is the sum
of conditionally independent circulalry symmetric r.v.’s, dk, it
is also a conditionally circularly symmetric complex Gaussian
r.v. with nonzero mean.
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