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Quantum error correction �QEC� is an essential element of physical quantum information processing sys-
tems. Most QEC efforts focus on extending classical error correction schemes to the quantum regime. The
input to a noisy system is embedded in a coded subspace, and error recovery is performed via an operation
designed to perfectly correct for a set of errors, presumably a large subset of the physical noise process. In this
paper, we examine the choice of recovery operation. Rather than seeking perfect correction on a subset of
errors, we seek a recovery operation to maximize the entanglement fidelity for a given input state and noise
model. In this way, the recovery operation is optimal for the given encoding and noise process. This optimi-
zation is shown to be calculable via a semidefinite program, a well-established form of convex optimization
with efficient algorithms for its solution. The error recovery operation may also be interpreted as a combining
operation following a quantum spreading channel, thus providing a quantum analogy to the classical diversity
combining operation.
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I. INTRODUCTION

Any implementation of quantum computing or communi-
cations requires a strategy for error mitigation. Indeed, the
development of quantum error correction �QEC� schemes
was an important early step in moving quantum computing
from an interesting theoretical idea to an exciting field with
potential for ground-breaking technological implementations
�1�. The importance of efficient and optimum error mitiga-
tion only increases as the field advances.

The earliest efforts in QEC used encoding techniques
modified from classical error correction schemes �1–5�. Fur-
ther analysis �6,7� laid the foundation for QEC theory, noting
that the important metric is how faithful the statistics of the
corrected state remain to the ideal behavior. While that ob-
servation suggests quantum error mitigation is thus an opti-
mization problem, most of the subsequent work in the field
has appropriately focused on perfect recovery from a set of
errors. This emphasis has allowed many techniques to be
borrowed from classical error correction and enabled impor-
tant feasibility studies in quantum computing. It is not, how-
ever, the only way to consider controlling for quantum errors
�8�.

Recently, some authors �9–11� have returned to examining
quantum error mitigation as an optimization problem. The
essential properties of a quantum state are the statistics of
any observable outcome; these are completely encapsulated
in the density operator � of the state. Noise is introduced by
the operation E, which can be thought of as a noisy quantum
communications channel. Thus, the goal of any error correc-
tion scheme is to design a recovery operation R such that the

recovered state is as faithful a representation as possible of
the input, judged by how well the statistics of observables
are preserved. The optimum recovery minimizes the “dis-
tance” between an input density � and the output R(E���).
This operation may differ from the more traditional QEC
recovery operation; such differences illustrate further the
contrast between quantum and classical error correction. To
distinguish this approach from QEC, we use the term quan-
tum error recovery �QER�. It should be emphasized that the
optimum QER recovery operation is dependent on a given
input density, encoding operation, and noise model.

The paper is organized as follows. In Sec. II, we define
the parameters for optimum QER. In Sec. III, the optimum
recovery operation is cast as a semidefinite program. Section
IV interprets the recovery operation as an optimal combining
problem and illustrates the computational benefit of such an
interpretation. In Sec. V, QER operations are derived for the
amplitude damping channel using codes encoding one qubit
into four and five qubits.

II. OPTIMUM QER

Most QEC procedures are designed on the principle of
“perfect” correction of arbitrary single qubit errors. Such a
design postulates that single qubit errors are the dominant
terms in the noise process; thus a scheme that corrects arbi-
trary single qubit errors and ignores higher order terms will
sufficiently mitigate the noise. Pursuit of this approach has
led to important results on the feasibility of quantum error
correction. However, one may reasonably ask how well this
generic approach succeeds in specific cases.

With every quantum code, in the current paradigm, there
is an associated recovery operation designed to perfectly cor-
rect the dominant errors. This “traditional” recovery �referred
hereafter as the QEC recovery operation� applies a syndrome
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measurement to determine which error occurred and a cor-
rection operation dependent on the observed syndrome. For a
given code and error process, the QEC recovery operation
may not provide the most effective safeguard from error.
Depending upon the form of the error process, an alternate
recovery operation may be designed that better preserves the
input state, based on some measure of statistical “closeness”
between the input density � and the output density R�E����.
Commonly used metrics for quantum information arise from
the fidelity, defined to be

F��,�� = tr��1/2��1/2, �1�

where � and � are density operators. The fidelity F takes a
value between 0 and 1, where 1 indicates that the states are
identical. Using Fo to represent any fidelity-based measure of
channel performance, the error recovery optimization prob-
lem is to find

R� = arg max
�R�

Fo�R � E� , �2�

where arg refers to the element of �R� that achieves the
maximum. To understand this optimization problem, the re-
mainder of this section will discuss the choice of Fo and the
properties of the set �R� of recovery operations.

The fidelity, as defined in �1�, measures the closeness be-
tween two quantum states; Fo in �2� quantifies the
information-preserving behavior of the channel R �E. There
are three standard choices of fidelity-based measures of
channel performance. In �10�, the minimum fidelity was cho-
sen for Fo, and a sub-optimal solution to �2� was obtained. In
�12�, the ensemble average fidelity was applied to a similar
optimization problem. In this paper, we follow the approach
of �9� and seek to maximize the entanglement fidelity.1 For a
more complete discussion of these channel measures, we re-
fer the reader to �14�.

Entanglement fidelity �15� arises from the mathematical
concept of mixed state purification. Any mixed quantum
state can be represented as a subsystem of a pure state in a
larger Hilbert space. The subsystem is mixed due to the en-
tangled nature of the pure state. Consider a mixed state �
�L�H�. By defining a reference space B, we may denote �
as a subsystem of a pure state,

� = trB�BH	
BH� , �3�

where �BH	 is a pure state in the space B � H. The entangle-
ment fidelity then measures how faithfully a channel A
maintains the purification �or, equivalently, how well it pre-
serves the entanglement�. It is given by

Fent��,A� = 
BH�IB � A��BH	
BH���BH	 , �4�

the squared fidelity of the input �BH	 with the output of the
channel IB � A.

With entanglement fidelity as Fo in �2�, we define the
optimum recovery operation for the error process E and input
distribution � as

R�
� = arg max

�R�
Fent��,R � E� . �5�

We now turn our attention to the set of recovery opera-
tions over which we are optimizing in �5�. A quantum opera-
tion must be completely positive �CP� and trace-preserving
�TP��16�. This requirement follows directly from the postu-
lates of quantum mechanics wherein the evolution of a
closed quantum system is unitary. Let A be a CPTP map
from L�H��L�K�. The most familiar representation of the
CPTP map is the Kraus �or operator sum� form, where the
mapping is specified by a set of operators �Ak� known as the
operator elements �16�. The channel output is given by

E��� = �
k

Ak�Ak
†, �6�

and the CPTP constraint is met when

�
k

Ak
†Ak = I , �7�

where I is the identity operator in L�H�.
While a properly constrained set of operators fully speci-

fies a quantum channel, the Kraus form is inconvenient for
optimization. The most obvious inconvenience is the many-
to-one correspondence between sets of operator elements and
channel mappings. For this reason, we will utilize the repre-
sentation of a channel mapping A by a positive semidefinite
operator XA on L�H � K� �17�, for which the correspon-
dence is one-to-one �18�. We will refer to the operator XA as
the Choi matrix �19–21�.

The Choi matrix may be defined in several ways. We will
employ the common practice of “stacking” columns of a
matrix to form a vector. Let C be a bounded linear operator
from H1 to H2 :C�L�H1 ,H2�. We define a ket in the Hil-
bert space H1 � H2 associated with C as2

�C		 = �
ij

cij�j	1�i	2, �8�

where ��j	1� and ��i	2� are orthonormal bases for H1 and H2,
respectively, and cij = 2
i�C�j	1 is the matrix element of C on
these bases. Two useful relations follow directly from this
definition. The first one,

A � B�C		 = �BCAT		 , �9�

applies whenever the dimensions of A, B, and C indicate that
BCAT is a valid operator.3 The second relation applies for C1,
C2�L�H1 ,H2�:

trH1
��C1		

C2�� = C1C2

† � L�H2� . �10�

1Use of the entanglement fidelity requires an assumption for the
input density �, leading one to argue that it is less general. The
impact of this assumption, however, is relatively benign. For ex-
ample, the choice of entanglement fidelity has no impact on channel
capacities �13�.

2The notation �·		 is used to emphasize that these kets represents
operators, not quantum states.

3Note the superscript T indicates the transpose with respect to the
specified basis without conjugation.
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The Choi matrix for the quantum operation A is given by
XA��k�Ak		

Ak�, and the channel mapping
A :L�H��L�K� is defined by

A��� = trH���T
� I�XA� . �11�

The required trace-preserving property can be stated as

trKXA = I � L�H� . �12�

III. OPTIMUM RECOVERY VIA SEMIDEFINITE
PROGRAMMING

The problem given by �5� is a convex optimization prob-
lem, and we may approach it with sophisticated tools. Par-
ticularly powerful is the semidefinite program �SDP� �22�,
where the objective function is linear in an input constrained
to a semidefinite cone. Indeed, the power of the SDP was a
primary motivation in choosing to maximize the entangle-
ment fidelity, which is linear in the quantum operation R.

The definition of entanglement fidelity given in �4� is in-
tuitively useful, but awkward for calculations. An easier
form arises when operator elements �Ai� for A are given. The
entanglement fidelity is then

Fent��,A� = �
i

�tr��Ai��2. �13�

From �13�, we may derive a calculation rule for the entangle-
ment fidelity when the channel A is expressed via the Choi
matrix. Using �10�, we see that tr Ai�=tr�Ai		

��= 

� �Ai		.
Inserting this into �13�, we obtain the entanglement fidelity
in terms of XA:

Fent��,A� = �
i



��Ai		

Ai��		 = 

��XA��		 . �14�

Armed with this expression for the entanglement fidelity,
we may now express �5� in a form readily seen to be a
semidefinite program. To do this, we must consider the form
of the composite operation R �E :L�H��L�H� expressed as
a positive operator on H � H. If the operator elements for the
recovery and channel are �Ri� and �Ej�, respectively, then the
operator XR�E is given by

XR�E = �
ij

�RiEj		

RiEj� . �15�

Applying �9�, this becomes

XR�E = �
ij

Ej
T

� I�Ri		

Ri�Ej
*

� I = �
j

�Ej
T

� I�XR�Ej
*

� I� ,

�16�

where the � represents complex conjugation, without trans-
position. The entanglement fidelity is then

Fent��,R � E� = �
j



���Ej
T

� I�XR�Ej
*

� I���		 = tr XRC�,E,

�17�

where

C�,E = �
j

Ej
*

� I��		

��Ej
T

� I = �
j

��Ej
†		

�Ej

†� . �18�

We may now express the optimization problem �5� in the
simple form

XR�

� = arg maxX tr�XC�,E�,

such that X � 0, trHX = I . �19�

This form illustrates plainly the linearity of the objective
function and the semidefinite and equality structure of the
constraints. Indeed, this is the exact form of the optimization
problem in �12�, which first pointed out the value of
semidefinite programs �SDP� for optimizing quantum chan-
nels.

The value of an SDP for optimization is two-fold. First, an
SDP is a subclass of convex optimization, and thus a local
optimum is guaranteed to be a global optimum. Second,
there are efficient and well-understood algorithms for com-
puting the optimum of a semidefinite program. These algo-
rithms are sufficiently mature to be widely available. Thus,
by expressing the optimum recovery channel as an SDP, we
have explicit means to compute the solution for an arbitrary
channel E.

IV. QUANTUM DIVERSITY COMBINING

In the preceding analysis, the method of encoding has
been implied by the choice of �. Indeed, in most treatments
of QEC, the input density is restricted to a subspace called
the quantum error correcting code �QECC�. If PC is a pro-
jection operator onto the code subspace, then �= PC�PC im-
plies that the state � is within the code subspace. The channel
is typically defined such that the input and output spaces are
identical �i.e., H=K�, and the noise process generally per-
turbs the system from the code subspace. While this repre-
sentation is a perfectly legitimate model for the error process
�and a convenient form when viewing QEC in a mode com-
parable to classical error correction� the dimensionality is
unnecessarily high for the optimization routine.

Recall that XR is a Hermitian operator on the space H
� K. The optimization thus has dH

2 dK
2 real parameters. Even

for a ��5, 1, 3��4 code, the smallest for arbitrary single qubit
errors �7,23�, this optimization has 220 optimization vari-
ables. The high dimensionality can be alleviated somewhat
by embedding the encoding into the noise process and rede-
fining E as a quantum spreading channel where dH�dK.

The transform to a quantum spreading channel is illus-
trated in Fig. 1. Consider the noise process E :K�K with
operator elements �Ei�, input density ��L�K�, and code
projector

4The notation ��n ,k ,d�� refers to a quantum code encoding k qu-
bits of information into a n qubit system. The parameter d refers to
the weight of the code �14�.
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PC = �
n

dH

�n	LL
n� , �20�

where �n	L�K are the logical states of the code. Since the
input is in the codespace, � is preserved by the code projec-
tor: �= PC�PC. We can reduce the dimensionality of the op-
timization by transforming this problem. Let H be a dH di-
mensional Hilbert space with orthonormal basis ��n	H�. H
can be considered the space of the information source. The
encoding process is accomplished by the operator UC

=�n
dH�n	LH
n� that maps the basis states of H to the logical

states in K. UC is an isometry: UC
† UC= I. Note that

UCUC
† = �

n

dH

�n	LL
n� = PC. �21�

If we redefine ��=UC
† �UC�L�H� and the operator elements

Ei�=EiUC, then we see the processes E��� and E����� are
identical:

E����� = �
i

EiUCUC
† �UCUC

† Ei
† = �

i

EiPC�PCEi
† = E��� .

�22�

By enacting such a transformation, the optimization dimen-
sion is reduced from dK

4 to dK
2 dH

2 . For the ��5, 1, 3�� code, the
reduction is from 220 to 212.

The above transformation illustrates an alternative inter-
pretation of recovering an encoded quantum state after an
error process. We may instead consider an unencoded state
input into a quantum spreading channel, a channel in which
the output dimension is greater than the input dimension
�i.e., dim K�dim H�. The recovery operation is an attempt
to combine the spread output back into the input space, pre-
sumably with the intent to minimize information loss. The
recovery operation is then the quantum analog to the classi-
cal communications concept of diversity combining.

Classical diversity combining describes a broad class of
problems in communications and radar systems. In its most
general form, we may consider any class of transmission
problems in which the receiver observes multiple transmis-

sion channels. These channels could arise due to multi-path
scattering, frequency diversity �high bandwidth transmis-
sions where channel response varies with frequency�, spatial
diversity �free-space propagation to multiple physically sepa-
rated antennas�, time diversity, or some combination of the
four. Diversity combining is a catch-all phrase for the pro-
cess of exploiting the multiple channel outputs to improve
the quality of transmission �e.g., by reducing error or in-
creasing data throughput�.

In a general description of classical diversity, the input
signal is coupled through the channel to a receiver system of
higher dimensionality. Consider a communication signal
with a single transmitter antenna and N receiver antennae.
Often, the desired output is a signal of the same dimension as
the input, a scalar in this case. Diversity combining is then
the process of extracting the maximum information from the
N-dimensional received system. In most communications
systems, this combining is done at either the analog level
�leading to beam-forming or multi-user detection� or digital
level �making the diversity system a kind of repeater code�.
Thus, the natural inclination is to equate diversity combining
with either beam-forming or repeater codes. The most gen-
eral picture of diversity combining, however, is an operation
that recombines the channel output into a signal of the same
dimension as the input. Thus, it is appropriate to consider a
quantum spreading channel to be a quantum diversity chan-
nel, and the recovery operation to be a quantum diversity
combiner.

V. EXAMPLES

To illustrate the potential benefit of optimum QER, we
numerically compare the performance of the optimum QER
with QEC recovery for two encoding schemes. First, we ex-
amine the ��5, 1, 3�� code in the presence of the amplitude
damping channel. Second, we compare the four-bit ampli-
tude damping code from �8� with the optimum QER. The
latter is a particularly apt choice for comparison, as the code
was designed for a specific channel and sought to only ap-
proximately satisfy the quantum error correcting conditions.

In both cases, the noise channel Ea is the amplitude damp-
ing channel. For a single qubit, Ea has operator elements

E0 = 
1 0

0 �1 − �
� and E1 = 
0 ��

0 0
� . �23�

This channel is a commonly encountered model, where the
parameter � indicates the probability of decaying from state
�1	 to �0	 �i.e., the probability of losing a photon�. Amplitude
damping is a logical choice to illustrate the benefits of opti-
mum QER, as the operation is not symmetric with respect to
�0	 and �1	.

A. Five-qubit code

The five-qubit code was independently discovered by
Refs.�7� and �23�. We will here follow the treatment in �14�
and specify the code via the generators �g1 ,g2 ,g3 ,g4� and the

logical Z̄ and X̄ operations given in Table I. The code sub-
space C is the two-dimensional subspace that is the +1

Encoder Channel Recovery Decoder

R′
: L(K) → L(H)E ′

: L(H) → L(K)

E R

ρin ∈ L(H)

U †
cUc

ρin
c ∈ C ⊂ L(K)

E(ρin
c ) ∈ L(K)

R(E(ρin
c )) ∈ C ⊂ L(K)

ρout ∈ L(H)

FIG. 1. Transform from standard quantum error correction to
quantum spreading channel. By considering the error channel E
together with the encoding UC and the recovery operation R with
the decoder UC

† , the dimension of the SDP may be reduced by a
factor of �dim K /dim H�2. Note that the output of the encoder UC

and the recovery channel R live on the code subspace C.
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eigenspace of the generators gi. The logical states �0	L and
�1	L are the +1 and −1 eigenkets of Z̄ on C.

To compute the optimum recovery for this code, we as-
sume that the logical states are equally likely; that is, �
= 1

2 �0	LL
0�+ 1
2 �1	

LL
1�. �This choice of � in fact assumes
nothing about the choice of codewords; rather, it is the maxi-
mum entropy distribution constrained to the code space C.�
The noise channel is Ea

�5, the amplitude damping channel
acting independently on each qubit. For each choice of the
parameter �, the optimum recovery operation R�

� is comput-
ing according to �5�. We compare the entanglement fidelity
Fent�� ,R �Ea

�5� for both R�
� and RQEC in Fig. 2.

Figure 2 illustrates clearly the difference between opti-
mum QER and QEC recoveries for large values of �. It is
also instructive to compare the techniques for small values of
�. We do this numerically by calculating the polynomial ex-
pansion of Fent�� ,R �E� as � goes to zero. The entanglement
fidelity for the optimum QER has the form Fent�� ,R �E�
�1−1.166�2+O��3�. In contrast, the QEC recovery is
Fent�� ,R �E��1−2.5�2+O��3�.

B. Four-qubit “approximate” code

In �8�, Leung et al. recognized the advantage that
channel-specific error recovery schemes can have over ge-

neric QEC routines. To illustrate the advantage, they de-
signed a code specific to the amplitude damping channel
with good performance for small � that only required four
qubits of overhead, in contrast to the generic five qubit code.
The code only approximately meets the QEC conditions, and
as a result, the “corrected” state is somewhat distorted from
the input, even when the dominant error term occurs. In this
way, the procedure is based upon principles similar to the
optimum QER we have developed.

The logical states are given by

�0	L =
1
�2

��0000	 + �1111	� , �24�

�1	L =
1
�2

��0011	 + �1100	� , �25�

and the recovery operation is specified by the circuits in Fig.
2 of �8�. We note that the recovery operation depends explic-
itly on the parameter �. We compare the recovery of Leung
et al. with the optimum QER computed according to �5�,
once again assuming the completely mixed input density �
= 1

2 �0	LL
0�+ 1
2 �1	

LL
1�. The numerical comparison for vari-
ous values of � is provided in Fig. 3. As � goes to zero, the
entanglement fidelity for the optimum QER is numerically
determined to have the form Fent�� ,R �E��1−1.25�2

+O��3�. In contrast, the Leung et al. recovery is Fent�� ,R
�E��1−2.75�2+O��3�.

C. Commentary on examples

It is not surprising that the optimum QER operation out-
performs the five qubit code and the Leung code. It is, how-
ever, noteworthy that the difference can be significant, for
even relatively small values of �. We may conclude that
channel specific recoveries can significantly improve the per-
formance of error correcting procedures. This conclusion

TABLE I. Generators and logical operations of the five qubit
�i.e., ��5,1,3��� code.

Name Operator

g1 XZZXI

g2 IXZZX

g3 XIXZZ

g4 ZXIXZ

Z̄ ZZZZZ

X̄ XXXXX

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ

QEC Recovery
Optimum Recovery
Single Qubit (No Error Correction)

F
e
n
t
(ρ
,R

◦E
)

FIG. 2. �Color online� Entanglement fidelity vs � for the five
qubit code and the amplitude damping channel Ea

�5. � refers to the
damping parameter of the channel. Entanglement fidelity for a
single qubit and no error correction �i.e., Fent�� ,Ea�� is included for
comparative purposes.
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0.1

0.2
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1

γ

Leung et. al. Recovery
Optimum Recovery
Single Qubit (No Error Correction)

F
e
n
t
(ρ
,R

◦E
)

FIG. 3. �Color online� Entanglement fidelity vs � for the four
qubit code of Leung et al. �8� and the amplitude damping channel
Ea

�4. Entanglement fidelity for a single qubit and no error correction
�i.e., Fent�� ,Ea�� is included for comparative purposes.
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was shared by Leung et al., who lamented the lack of a
general method to design such channel-specific schemes. The
SDP formalism outlined in this paper provides such a general
method.

Perhaps the most notable improvement in optimum QER
can be noted in the “single qubit �no error correction�” com-
parisons in Figs. 2 and 3. These curves represent the en-
tanglement fidelity of a single qubit transmitted through the
noisy channel. For values of � where the recovered entangle-
ment fidelity lies below the “single qubit,” we see that the
error mitigation procedure does more harm than good. Per-
forming optimum QER as opposed to QEC significantly ex-
tends the values of � for which error mitigation is valid. This
suggests optimum QER will be a particularly valuable tech-
nique for noisier systems.

Finally, it is worth noting the duality between optimum
QER and optimum encoding. We have derived the optimal
operation R for a given encoding and noise process. By the
same process, one may derive the optimum encoding given a
recovery operation and noise process. This can most easily
be seen by noting that the encoding operation is a valid quan-
tum operation, and in fact, a spreading operation; it is thus
subject to the same semidefinite cone constraints as the re-
covery operation. In a manner similar to those suggested by
�24,9�, one can conceivably obtain a channel-specific error
recovery scheme by alternatively holding the recovery fixed
and optimizing the encoding, and holding the encoding fixed
and optimizing the recovery. Full analysis of such a tech-
nique is deferred for future consideration.

VI. CONCLUSION

The structure of quantum operations allows quantum error
correction to be approached as an optimization problem.
Specifically, optimum recovery of an encoded quantum state
from an error process can be solved numerically using
semidefinite programming when optimality is interpreted as
a maximization of the entanglement fidelity. This analysis

suggests the ability to systematically search for recovery op-
erations for complicated error schemes beyond those readily
analyzed and corrected through more traditional QEC meth-
odologies. This problem is, in general, the optimum combin-
ing operation following a quantum spreading channel and is
thus a quantum parallel to the classical problem of diversity
combining. We have shown, through the example of the am-
plitude damping channel, that knowledge of the physical
noise process can be exploited to significantly improve the
performance of an error recovery operation.

Several questions remain to fully understand the impact of
optimum QER on implementing a quantum information pro-
cessing device. One should like to understand qualitatively
the action of the optimum recovery, so as to develop intuition
in quantum code and recovery design. It will also be impor-
tant to establish the ease with which such operations could
be implemented in any of the models for quantum computa-
tion. Furthermore, we showed the exponential growth of the
SDP in the channel dimension, thus making it difficult to
analyze high dimensional channels or long codes. It will be
valuable to develop computationally feasible techniques to
determine optimal or near-optimal recoveries in such cases.
Finally, it is of interest to understand how optimum QER will
impact fault tolerant quantum computation, particularly the
potential propagation of error.

Recently, two different sets of authors, �25,26� presented
parallel work which explores the iterative encoding and re-
covery problem via semidefinite programming.
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